
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LASER DEMONSTRATION AND PERFORMANCE CHARACTERIZATION OF 
OPTICALLY PUMPED ALKALI LASER SYSTEMS 

 
 

DISSERTATION 
 
 

Clifford V. Sulham, Major, USAF 
 

AFIT/DS/ENP/10-S06 
 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The views expressed in this dissertation are those of the author and do not reflect the 
official policy or position of the United States Air Force, Department of Defense, or the 
United States Government. 



 

AFIT/DS/ENP/10-S06 
 

 
 

LASER DEMONSTRATION AND PERFORMANCE CHARACTERIZATION OF 
OPTICALLY PUMPED ALKALI LASER SYSTEMS 

 
 
 
 

DISSERTATION 
 
 
 

Presented to the Faculty 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

 
 
 

Clifford V. Sulham, BS, MS 
 

Major, USAF 
 
 

September 2010 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 





iv 

AFIT/DS/ENP/10-S06 

Abstract 

 

Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power 

lasers in military applications that will not suffer from the long logistical trails of 

chemical lasers or the thermal management issues of diode pumped solid state lasers. 

This research focuses on characterizing a DPAL-type system to gain a better 

understanding of using this type of laser as a directed energy weapon. A rubidium laser 

operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate 

the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2.  Linear scaling 

as high as 32 times threshold is observed, with no evidence of second order kinetics.  

Comparison of laser characteristics with a quasi-two level analytic model suggests 

performance near the ideal steady-state limit, disregarding the mode mis-match.  

Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling 

to a few cm2 is sufficient to achieve tactical level laser powers.  The temporal dynamics 

of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving 

laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 

state.  Lastly, multiple excited states of rubidium and cesium were accessed through two 

photon absorption in the red, yielding a blue and an IR photon through amplified 

stimulated emission.  Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase 

dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity 

for improvement.  This versatile system might find applications for IR countermeasures 

or underwater communications.  
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LASER DEMONSTRATION AND PERFORMANCE CHARACTERIZATION OF 

OPTICALLY PUMPED ALKALI LASER SYSTEMS 

 

I.  Introduction 

Alkali Lasers 

Although optically pumped alkali lasers were originally proposed long ago, they 

have only recently been demonstrated as laboratory systems. The first alkali laser 

pumped on the D2 line and lased on the D1 line was demonstrated by Krupke et al. in 

2003 using rubidium as the gain medium[11].  It was quickly followed by many others 

with varying types of pump sources and using different alkali atoms.  The interest in the 

alkali laser systems stems in part from the small quantum defect between the pumped 

level and the laser level as shown in Table 1 as well as the large optical cross section in 

the alkalis and their well known collisional mixing rates.  In addition, the D2 pump 

transitions for potassium, rubidium, and cesium are well matched with existing laser 

diodes. 

The term Diode Pumped Alkali Laser (DPAL) was coined by Beach [4], and is 

taken to represent any three level alkali laser system which is optically pumped and uses 

the alkali vapor as the gain medium.  The alkali atoms are pumped from the 2S1/2 ground 
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state to the 2P3/2 second excited state. This transition from the 2S1/2 to the 2P3/2 is 

commonly referred to as the alkali’s D2 line.  

 

Table 1. Alkali D1 and D2 transition wavelengths and fine structure splitting [5] 
Alkali D1 (laser) (nm) D2 (pump) (nm) �E (2P3/2 – 2P1/2) (cm-1) 

Li 670.98 670.96 0.444 

Na 589.76 589.16 17.2 

K 770.11 766.70 57.7 

Rb 794.98 780.23 237 

Cs 894.59 852.35 554 

 
 
 
Once in the excited 2P3/2 state, the alkali atoms are collisionally relaxed to the 2P1/2 state.  

Lasing occurs between the 2P1/2 state and the ground state 2S1/2 on the D1 line. An 

example of this is shown in Figure 1 from Krupke's original paper for the rubidium 

transitions. 

In addition to the alkali vapor gain medium in the laser cell, other gases must be 

added to increase the efficiency of the system.  A buffer gas is needed to pressure 

broaden the absorption line of the alkali atoms to effectively match the line width of the 

pump source employed.   
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Figure 1.  Energy levels accessed in a rubidium DPAL [11]. 

 
 
 

A comparison of a typical narrowbanded diode pump source with a sub atmospheric 

pressure broadened absorption line is shown in Figure 2.  Also, a spin-orbit relaxing gas 

must be present to provide the mechanism to rapidly collisionally relax the alkali atoms 

from the 2P3/2 state to the 2P1/2 state.   

 
 

 
Figure 2.  Spectral bandwidth of a pump laser and simulated D2 absorption 

lineshape [5]. 
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The energy transfer rate of the fine split 2P states is referred to as the spin orbit coupling 

rate, and must be significantly faster than the radiative lifetime of the 2P3/2 state, which is 

on the order of 25 ns for rubidium.  In addition this rate should also be faster than the 

absorption rate, absorptionR , which is roughly, 

 

  (1) 

 

where I is the pump intensity, SATI is the saturation intensity, and Rτ  is the radiative 

lifetime.  When the spin orbit rate is faster than absorptionR  the system can be analytically 

approximated by the quasi-two level model.  If the spin orbit coupling rate is not much 

faster than the absorption rate, then the alkali atoms begin bottlenecking in the 2P3/2 state 

and laser performance is degraded. 

There are two approaches to effectively matching the pump spectral linewidth to 

the alkali’s absorption linewidth.  The first is to use existing laser diodes as pump 

sources.  This requires pressures of several atmospheres to sufficiently broaden the 

absorption line.  Second, the existing laser diode technology can be improved to narrow 

the linewidths of the diodes by using volume Bragg gratings.  Multi-atmosphere DPALs 

have been successfully demonstrated by researchers at the Lawrence Livermore National 

Laboratory, but these elevated pressures may add complexity to an operational system.  

The Center for Research and Education in Optics and Lasers (CREOL) at the University 

of Central Florida has pursued the second matching technique.  Using volume Bragg 

gratings, they have recently narrowbanded diodes at the rubidium D2 wavelength to 10 

1
absorption

SAT R

IR
I τ

=
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GHz with diode stacks capable of producing ~250 W of power enabling pressure 

broadening with sub atmospheric pressures. 

Although DPALs are a promising new area of research for the Air Force, 

conducting research for high power laser applications is not new.  In fact, a great deal of 

research has previously been accomplished on both the COIL and on Diode Pumped 

Solid State Lasers (DPSSLs) by Air Force researchers.  The COIL uses a chemical 

reaction between basic hydrogen peroxide and chlorine gases.  This chemical reaction 

produces an excited state of oxygen  ( )1
2O a ∆  , which is used to pump atomic iodine to 

its first excited state for lasing through the process shown in equation 2 [35].   

 ( ) ( ) ( ) ( )1 2 3 2
2 3/ 2 2 1/ 2O a I P O I P∆ + ↔ Χ Σ +  (2) 

The chemical reaction that produces the excited oxygen is [35]. 

 ( ) ( ) ( ) ( )1
2 2 2 2 22 2 2Cl g H O l KOH l O a KCl H O+ + → ∆ + +  (3) 

Although capable of producing powers on the order of a megawatt, there are several 

drawbacks to employing this type of laser in an operational system.   First is the logistical 

trail required to transport the necessary chemicals to the battlefield.  Second, is the laser 

firing time would be limited by the amount of chemicals that could be carried aboard the 

aircraft.  However, even with these limitations it is important to note that COIL is a 

highly efficient laser system and has recently been integrated onto multiple airframes and 

has successfully performed testing in both a tactical mode on the advanced tactical laser 

(ATL) and in strategic applications on board the airborne laser (ABL).  The ATL was 

tested in a tactical role in June 2009, and used a 100 kW class COIL device integrated 

onto a USAF C-130 aircraft.  During several laser shots, the ATL engaged various targets 
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on the ground.  More recently, the COIL was demonstrated onboard the ABL aircraft as a 

1 MW class laser to be used in the strategic role of ballistic missile intercept.  In February 

2010, the ABL destroyed boosting missiles on two occasions demonstrating the 

feasibility of this type of weapon system. 

 In an effort to eliminate the logistical trail and limited magazine depth of COIL, 

research into DPSSLs has been underway for many years.  The tremendous advantage to 

DPSSLs is their ability to be electrically pumped with laser diodes, effectively producing 

an unlimited amount of laser shots while the aircraft is in flight.  Unfortunately, DPSSLs 

also have problems that must be addressed for high power applications.  Since the gain 

medium is a solid, transport of waste heat out of the gain medium is difficult, and as the 

solid state material temperature increases, second order effects begin affecting laser beam 

quality.  And to be an effective weapon system, a laser must have both high power and 

good beam quality.  Recent demonstrations by Boeing have yielded a DPSSL capable of 

producing a 100 kW laser with an acceptable beam quality, and future beam quality 

improvements should result in an operationally viable laser system.  However, with 

DPSSLs there is no clear path to achieving the megawatt class laser required for strategic 

military applications. 

 The possibility of an electrically pumped gas phase laser is what has driven the 

current Air Force and Department of Defense research into the DPAL arena.  This type of 

laser system removes the limitations of both the COIL and DPSSLs while incorporating 

the positive aspects of each.  Although still very early on in the development stages, 

DPALs exhibit tremendous potential in achieving 100 kW and even 1 MW class lasers 

which may be integrated onto aircraft. 
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 The first DPAL laser was demonstrated only four years before this research effort 

began, and because it is such a promising technology, a large amount of research has 

been conducted by both the Department of Defense and the Department of Energy.  In the 

seven years since the first rubidium laser produced 30 mW, DPALs have been 

demonstrated with potassium and cesium, and power outputs as high as 145 W have been 

reported with efficiencies only limited by volume mismatch of the pump laser and the 

alkali laser [11,53,30].  Although many demonstrations have been performed using alkali 

vapors as a gain medium, almost all of these systems have focused on increasing the 

power out of the laser and not necessarily fully characterizing the laser's performance. In 

fact, most DPAL experiments deviate very little from the operating conditions used for 

the initial demonstration by Krupke et al.  This research effort will characterize the 

performance of rubidium lasers for a better understanding of the implications of using 

different spot sizes (mode overlap), buffer gases, and output couplers to gain the 

knowledge necessary to scale these systems to higher powers which will be useful for 

military applications.  While heat loading has been observed previously, no work has 

been done to quantify the amount of heat buildup, or even to determine what effects 

occur during cell heating which degrade laser performance.  An important aspect of this 

research for the DPAL community will be the characterization of laser degradation 

during heat buildup in the cell. 

Quasi-two Level Performance 

The first portion of the present work has demonstrated an optically pumped 

rubidium laser operating at multiple alkali concentrations and with two different output 
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couplers. The pump intensity reached a value 18 times the laser threshold value.  The 

experimentally determined laser efficiency under the varying operating conditions is 

compared to an analytic quasi two level model which incorporates an assumption that the 

spin orbit rate is infinitely fast.  The resulting data and analysis were accepted for 

publication in Optics Communications in Jun 2010, and are presented in Chapter III [30]. 

Three-level Model and Temporal Dynamics 

Continuing on the path of laser characterization, another demonstration of a 

rubidium laser with varying buffer gas types and concentrations as well as a wider range 

of alkali concentrations and output couplers was performed.  Pump intensities as high as 

32 times threshold were achieved minimizing the initial losses required to reach 

threshold.  Even with these high pump intensities, the data exhibited no non-linear 

behavior and maintained linear slope efficiencies.  In general, DPAL results are not 

interpreted in light of existing modeling efforts.  The present research compares collected 

pulsed alkali laser data to an existing frequency dependent three-level model.  The 

comparison of the data to the model is performed on not only the rubidium laser power 

but also on the temporal pulse shapes of the laser output.  In fact, no previous work has 

been reported on the temporal dynamics of pulsed DPAL systems, the data is always 

reported as an average throughout the pulse.  The results of this present research were 

accepted for publication at the American Institute of Aeronautics and Astronautics 

Plasmadynamics and Lasers conference in June 2010.  Expanded analysis of this data will 

be submitted to Applied Physics B, and is presented in Chapter IV.  
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Two Photon Absorption 

Lastly, an innovative technique for producing both blue and infrared stimulated 

emission spots using two photon absorption in an alkali vapor was achieved in both 

rubidium and cesium.  All transitions in this three-level laser system are optical resulting 

in no thermal loading on the system.  The possibility of a laser similar to DPALs capable 

of lasing in the blue or the IR is very exciting to the high power laser community as well 

as the IR countermeasures community.  A high power laser operating in the blue versus 

the red, can be focused to a smaller spot as a result of its shorter wavelength resulting in 

greater damage given similar power levels.  Additionally, an IR laser capable of 

operating over a wide range of lines in the near to mid IR bands could be used in an IR 

countermeasures application.  The results of this research were published in the Journal 

of Applied Physics B: Lasers and Optics and are presented in Chapter V [29]. 
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II. Background 

 

Alkali Data 

In theory, any of the alkali's listed in Table 1 can be used in a three-level laser 

system to create a DPAL system. However, for practical applications, potassium, 

rubidium and cesium are the most useful due to the close energy spacing of the 2P3/2 and 

2P1/2 states of lithium and sodium.  Only rubidium and cesium were employed during the 

present research, and information on these elements is presented below. Tables 2, 3, 4, 

and 5 list many of the physical parameters for the rubidium and cesium D1 and D2 

transitions. While Figures 3, 4, 5, and 6 show the hyperfine splitting of the two alkali's D1 

and D2 transitions. 

Employing alkali metal vapor as the gain medium for DPALs is benefited by the 

characterization of the elements that has been done previously.  The transition optical 

properties in Tables 2-4 reflect many of the well characterized values that are of interest 

when designing a laser system.  In fact, the alkali metal properties are so well known that 

the United States time standard is based on a cesium frequency. 

Similarly, the splitting of the fine structure into the hyperfine components is 

extremely well known for both rubidium and cesium.  While cesium has a single isotope 

to consider, both 85Rb and 87Rb are present in its natural isotopic abundance at 72.16% 

and 27.84% respectively [17].  The transition properties and hyperfine splitting are 

similar for the two isotopes of rubidium and only the 87Rb data is presented below. 
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Table 2. Rubidium D1 (52S1/2 – 52P1/2) transition optical properties [27] 
Property Symbol Value 

Frequency oυ  377.107 463 380(11) THz 

Energy  oh υ  1.559 591 016(38) eV 

Wavelength λ  794.767 119(24) nm 

Lifetime τ  27.679(27) ns 

Decay Rate Γ  36.129(35) x 106 s-1 

Natural Line Width (FWHM) Naturalυ  5.7500(56) MHz 

Absorption Oscillator Strength f  0.342 31(97) 

 
 

 

 
Figure 3.  Rubidium D1 (52S1/2 – 52P1/2) hyperfine energy level splitting [27] . 
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Table 3. Rubidium D2 (52S1/2 – 52P3/2) transition optical properties [27] 
Property Symbol Value 

Frequency oυ  384.230 484 468(62) THz 

Energy  oh υ  1.589 049 462(38) eV 

Wavelength λ  780.241 209 686(77) nm 

Lifetime τ  26.2348(77) ns 

Decay Rate Γ  38.117(11) x 106  s-1 

Natural Line Width (FWHM) Naturalυ  6.0666(18) MHz 

Absorption Oscillator Strength f  0.695 77(29) 

 
 
 

 
Figure 4.  Rubidium D2 (52S1/2 – 52P3/2) hyperfine energy level splitting [27]. 
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Table 4. Cesium D1 (62S1/2 – 62P1/2) transition optical properties [28] 
Property Symbol Value 

Frequency oυ  335.116 048 807(41) THz 

Energy  oh υ  1.385 928 495 (34) eV 

Wavelength λ  894.592 959 86(10) nm 

Lifetime τ  34.791(90) ns 

Decay Rate Γ  28.743(75)  x 106  s-1 

Natural Line Width (FWHM) Naturalυ  4.575(12) MHz 

Absorption Oscillator Strength f  0.3449(26) 

 
 
 

 
Figure 5.  Cesium D1 (62S1/2 – 62P1/2) hyperfine energy level splitting [28]. 
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Table 5. Cesium D2 (62S1/2 – 62P3/2) transition optical properties [28] 
Property Symbol Value 

Frequency oυ  351.725 718 50(11) THz 

Energy  oh υ  1.454 620 563(35) eV 

Wavelength λ  852.347 275 82(27) nm 

Lifetime τ  30.405(77) ns 

Decay Rate Γ  32.889(84) x 106  s-1 

Natural Line Width (FWHM) Naturalυ  5.234(13) MHz 

Absorption Oscillator Strength f  0.7164(25) 

 
 
 

 
Figure 6.  Cesium D2 (62S1/2 – 62P3/2) hyperfine energy level splitting [28]. 
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Alkali lasers rely on heating the metal until the vapor pressure creates a number 

density high enough to produce gain.  The temperatures typically used for rubidium and 

cesium lasers are between 100oC and 120oC.  The vapor pressure curves are well known 

for these alkali metals [27, 28].  The vapor pressure equations for the liquid phase of 

rubidium and cesium are shown in equation 4 and 5 respectively, where vP  is the vapor 

pressure in Torr and T , is the temperature in Kelvin.  The alkali number densities from 

the vapor pressure curves are shown in Figure 7. 

 10
4040log 2.881 4.312         312 < T < 550vP

T
= + −  

(4) 

 10
3830log 2.881 4.165         302 < T < 550vP

T
= + −  

(5) 

 
 

 
Figure 7.  Vapor pressure curves of rubidium (� ) and cesium(� ) [27, 28] 
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Even with the recent advancements in narrowbanding of diode stacks, DPAL 

systems still required pressure broadening of the absorption line.  In addition to the 

pressure broadening gas, an additional gas is required to provide the coupling between 

the spin orbit split 2P3/2 and 2P1/2 states.  For rubidium, both the pressure broadening rates, 

reported in MHz/Torr, and the collisional cross section, reported in cm2, are well known 

for the gases most commonly used in DPALs.  The cross sections and pressure 

broadening rates for methane, ethane, and helium are shown in Table 6. 

 
Table 6. Rubidium spin orbit coupling cross sections and pressure broadening 

 rates [22, 23, 36, 38] 

Buffer Gas 

Cross Section 

( )
3 / 2 1/ 2

-16 210 cmP Pσ → ×

   

Pressure Broadening 
Rate, D2 line 
(MHz/Torr) 

Methane 41.0 5±  26.2  + 0.6 

Ethane 77.0 7.7±  28.1  + 0.7 

Helium    0.5   20.0  + 0.14 

 
 
 

Previous Laser Demonstrations 

Since their first demonstration in 2003 [11], a significant amount of research has 

been performed using one of the alkalis as the gain medium in a gas phase laser.  To date, 

potassium, rubidium, and cesium have successfully been lased.  Primarily, ethane, 

methane, and helium, or some combination of them, have been used for both spin orbit 

relaxation and for pressure broadening of the D2 absorption line.  Initially, surrogate 

pump sources were used instead of diodes, but recently both surrogate and diode stacks 

have been incorporated into DPALs.  Most researchers working on DPAL systems report 
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their results in power or energy per pulse.  However, laser performance depends upon the 

intensity of the pump source and not its power, so it is important to analyze the number or 

times above threshold that an experiment achieves.  Since DPAL systems must be 

bleached to begin lasing, the threshold value is large compared to other laser systems and 

for this initial loss to be negligible, or to achieve a high total efficiency, the laser must 

operate at many times the threshold value.  Throughout this document the term bleached 

will imply the pump transition is saturated in the presence of lasing.  A summary of the 

previous work accomplished on DPAL systems is presented in Table 7. 

 
 

Table 7. Relevent alkali laser demonstrations 
Year Alkali Pulsed 

CW 
Buffer Gas Power/Energy 

Achieved 
Slope 
Eff. 

Times above 
Threshold 

Reference 

2003 Rb CW C2H6 / He     0.03 W 0.54   1.4 [11] 
2004 Cs CW C2H6 / He     0.23 W 0.34   2.3 [5] 
2005 Rb Pulsed C2H6 / He     0.80 W      80 mJ    4.0 [16] 
2006 Rb CW C2H6 / He     0.40 W 0.32   1.9 [18] 
2006 Cs Pulsed C2H6 / He     1.50 W 0.06   2.8 [33] 
2006 Cs Pulsed C2H6 / He     .013 W       13 µJ 0.02   1.6 [34] 
2006 Cs CW C2H6     0.38 W 0.81   5.5 [42] 
2006 K CW C2H6     0.01 W 0.2   1.1 [43] 
2007 Rb CW/chopped C2H6 / He     0.02 W  10.0 [12] 
2007 Rb CW 3He     0.34 W 0.21   4.1 [36] 
2007 Rb CW 4He     0.12 W    4.5 [37] 
2007 Cs CW C2H6   10.00 W 0.68   6.4 [45] 
2007 K CW He     0.04 W 0.19   1.2 [44] 
2008 Cs CW/chopped C2H6 / He   48.00 W 0.52 12.0 [40] 
2008 Rb CW C2H6   17.00 W 0.53   6.3 [41] 
2008 Rb CW C2H6     8.00 W 0.60   4.5 [46] 
2009 K Pulsed He     .090 W        9 mJ    8.0 [54] 
2010 Rb CW CH4 / He 145.00 W 0.28   7.0 [53] 
2010 Rb Pulsed CH4     1.00 W     100 µJ 0.30 32.0 [30] 
 
 

Soot Deposition on Windows 

 Several researchers have demonstrated alkali cell window degradation at 

temperatures above 120oC [16, 45].  When temperatures are maintained below this level, 
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the deposits on the windows do not occur, even when the laser was operated for several 

hours.  They suggest that the reason for the contamination on the cell windows is due to a 

chemical reaction between the ethane and the alkali.  The reaction appears to require both 

elevated temperatures and the interaction of the laser light.  The chemical reaction 

appears to produce both an alkali hydrate in the form of a white powder, and carbon 

deposits in the form of soot.  An example of the cell window contamination reported by 

Zhadanov et al. is shown in Figure 8. 

 
 

 
Figure 8.  Soot deposition on alkali cell windows [45]. 
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Output Coupler Effects 

 Given the high gain produced by the alkali atoms, a minimal amount of feedback 

is required to keep the gain above the round trip cavity losses.  Typical output coupler 

reflectivities are around 20% reflective.[5, 46, 54]  However, the optimum output coupler 

has been shown to reach as high as 40% reflective.[18]  The slope efficiency dependence 

on output coupler reflectivity for multiple concentrations of ethane was reported by 

Perschbacher et al. and is shown in Figure 9. 

 

 
Figure 9.  Laser performance dependence on output coupling reflectivity while 

employing 100, 300, or 400 Torr of ethane [18]. 
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High Power CW Issues 

 While employing a laser diode array capable of producing 100 W of pump power, 

Zhdanov et al. observed a decrease in laser performance at high pump powers exhibited 

as a roll over in the laser output power [40].  However, when a chopper was placed into 

their experimental setup with a duty cycle of 10%, the laser output power was linear.  

Zhdanov proposed that the roll over while operating the laser under CW conditions was a 

result of thermal effects due to the heat generated through the cesium’s quantum defect.  

They further hypothesize that this increase in temperature can result in thermal lensing 

within the laser cavity which could change the laser configuration by increasing losses 

within the cavity.  To date, no research has been done to test this hypothesis.  The data 

presented by Zhdanov et al. comparing CW to pulsed operation is shown in Figure 10. 

 
 

 
Figure 10.  Laser performance for a CW (� ) system, 100% duty cycle, and the same 

pump source in a chopped mode (), 10% duty cycle[40] 
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Status of DPAL Models 

Several modeling efforts have been undertaken in an attempt to accurately 

represent a DPAL.  Beach et al. developed the first CW model only one year after the 

first rubidium laser demonstration [5].  Their model has been compared to several sets of 

laser performance data from several researchers and accurately models the data under 

standard DPAL conditions.  Similarly, the Aerosoft corporation, under contract to the 

Directed Energy directorate of the Air Force Research Laboratory has undertaken an 

extensive high power CW modeling effort for DPALs, and their initial results appear very 

promising [14].  Lastly AFIT has developed two models for DPALs.  The first is a 

quantitative model that assumes the laser is operating in the quasi-two level limit, and is 

compared to experimental data in Chapter III [8].  The second AFIT model is for a pulsed 

DPAL, which presents more of a challenge than the previous CW systems [54].  For a 

pulsed system, the assumption of operating at steady state cannot be made, and the 

differential equations that describe the laser operation can not be set to zero, and as a 

result they must be solved numerically.  The comparison of the pulsed model to data 

collected during this effort is presented in Chapter IV. 
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III.  A Pulsed, Optically-Pumped Rubidium Laser at High Pump Intensity 

Introduction 

 The Diode Pumped Alkali Laser (DPAL) system employs diode bars to optically 

excite the first 2P3/2 state of the alkali metals via strong absorption on the D2 transition 

followed by collisional relaxation to the spin orbit split 2P1/2 state and lasing to the ground 

state on the D1 transition [11, 5].  The three-level laser exhibits a high threshold for pump 

intensity, ~ 1 kW/cm2, as the gain volume must be fully bleached to achieve 

lasing.[22,42,43,8]  Indeed, analytic modeling establishes a pump threshold that depends 

directly on the alkali atom concentration and cavity losses.[8]  Early laser demonstrations 

achieved slope efficiencies as high as 81%,[42] but were limited to pump intensities of 

1.5 - 6 times threshold.[11,5,22,42,7,18,46]  More recently, pump intensities have been 

scaled to 10-14 times threshold.[54,40]  In particular, the cesium laser pumped by four 

laser diode arrays achieved linear scaling to a peak power of 100 W, or ~ 14 times 

threshold, if the pump duration was limited to 0.1 s.[40] 

 Ideal DPAL performance is achieved when spin-orbit relaxation is much faster 

than the excitation rate.  Under these conditions, a quasi-two level analytic model has 

been developed where the output intensity above threshold scales linearly with input 

intensity.[8]  Most experiments have illustrated the attainment of this limit where 

bottlenecking, resulting from insufficient spin-orbit relaxer concentration, is avoided.  

Sublinear performance has been observed at higher heat loading.[40]  However, the cause 

is not well understood and might also be attributable to lower on-axis concentrations.[48] 
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 DPAL performance would be degraded if energy pooling or nonlinear excitation 

processes removed population from the three lowest atomic states.  Atomic emission has 

been observed from numerous higher lying states when the pump intensity and alkali 

concentration is sufficiently high [10,3].  For pulsed excitation at 15 mJ in an 8 ns pulse 

and rubidium concentrations of > 1016 atoms/cm3 (T > 543 K), emission from more than 

30 highly excited states has been observed.[20]  Furthermore, ionization of the alkali 

atoms is achievable when the alkali number density is high and might catastrophically 

degrade laser performance.[3]  The limit for linear intensity scaling in the DPAL system 

is unknown and is a key issue addressed in the present work.  By scaling to many times 

above threshold, the overall system efficiency may be significantly improved by reducing 

the initial loss to bleach the sample. 

The dependence of threshold and slope efficiency on cavity losses has been 

observed in a number of experiments [5,18,46,36], while the total output power 

dependence on temperature has been observed and modeled [42,7,46,49].  In particular, 

Wu et al. [36] characterized the dependence of threshold and slope efficiency on output 

mirror reflectivity for a Rb – He laser.  However, the dependence of threshold and slope 

efficiency on alkali concentration has not been quantitatively evaluated in the context of 

the recently reported analytic model.[8]  Since threshold and slope efficiency depend 

critically on the number of absorbed photons, they present an opportunity to evaluate the 

character of the bleached wave under lasing conditions.  In the present work we seek to 

place threshold and efficiency observations in context of the recently developed analytic 

model.[8]  In particular, the effective value for the D2 absorption cross-section for 

broadband optical excitation in the presence of lasing is examined. 
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Experimental Setup 

 A frequency doubled Nd:YAG (Quantronix Eagle) laser pumped, cryogenically 

cooled Ti:Sapphire (KML) laser was used as the excitation source for the Rb laser, as 

illustrated in Figure 11.   

 
 

 
Figure 11.  Optically pumped rubidium laser apparatus. 

 
 
 

The Ti:Sapphire laser produced 100 ns pulses of 1.89 mJ/pulse and 10 kHz for an average 

power of 18.9 W. The energy delivered to the alkali cell was varied from 0 - 0.2 mJ/pulse 

by rotating the linear polarization of the pump beam with a half wave plate relative to the 

polarizing beam splitter.  For one set of experiments, a Photonics Industries DLM-100  

laser was used to pumped the same cryo-cooled Ti:Sapphire.  In this configuration, 

incident laser energy was scaled by 50% more to achieve 0.3 mJ/pulse. 

The glass rubidium cell was 12.7 cm long by 2.54 cm wide with Brewster angle 

quartz widows.  The cell was housed in an aluminum oven with independent control of 

the temperatures of the gain volume and the alkali stem attached to the bottom of the cell. 

The alkali source was typically maintained at 373 - 393K, corresponding to Rb vapor 



25 

pressures of 0.8 - 2.0 x 1013 atoms/cm3, inferred by cell temperature, while the gain 

volume was generally 3 C higher.  The cell was filled with 550 Torr of methane at room 

temperature (1.8 x 1019 molecules/cm3) and sealed before installation in the heater block.  

The methane serves both as a collision partner for relaxation between the pumped and 

upper laser level spin-orbit split states, and to collisionally broaden the D2 pump 

transition. 

The spectral width of the pump sources was measured by a Yokogawa AQ6370 

optical spectrum analyzer as 34.5 GHz.  The source is spectrally broad relative to the Rb 

D2 absorption feature. The broadening rate for methane on the Rb D2 line is 26.2 

MHz/Torr at 394K,[22] establishing a Lorentzian linewidth (FWHM) of 18.5 GHz.  The 

full hyperfine splitting and isotopic variance has been modeled previously, and reduces 

the absorption cross-section at line center compared to a single Lorentzian approximation 

by less than 15% for the current experimental conditions.[19]  A comparison of the pump 

spectral bandwidth and absorption feature is provided in Figure 12.  

The Rb laser cavity was formed by a concave high reflector of 1.0 m radius of 

curvature and a flat output coupler of either 23% or 32% reflectivity, separated by 0.4 m, 

as illustrated in Figure 3. The alkali cell was located at 16 cm to 28.7 cm from the output 

coupler.  The TEM00 Gaussian beam for this resonator exhibits a waist at the output 

coupler of 0.23 mm.  Note that the mirror diameters of 5 cm and alkali cell diameter of 

2.5 cm are not represented to scale in Figure 13.  Location of laser spot measurements in 

relation to alkali cell position are shown in Figure 13. 
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Figure 12.  Spectral bandwidth of: (…) pump laser and (___) simulated D2 

absorption lineshape. 
 
 
 

 
Figure 13.  Laser cavity geometry and beam spot sizes. 
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Average pump power was recorded between the beam splitter and the gain 

volume using an OPHIR model L30A-SH-V1 power meter.  The Rb laser power was 

recorded with the same power meter after transmission through a 795 nm filter to block 

any residual pump power which leaked through the polarizing beam splitter. The pump 

laser wavelength was centered on the D2 absorption feature by maximizing the ratio of 

the D1 to D2 line fluorescence from a separate reference cell using an Ocean Optics 

USB4000 spectrometer.  The spot sizes of the pump and laser beams were observed at 

several distances using a Newport LBP-HR beam profiler.  The temporal character of the 

pump and laser beams were simultaneously recorded and averaged over 20 pulses with 

two New Focus model 1621 nanosecond rise-time photodiodes and an Agilent 

MSO6104A 1GHz oscilloscope. 

Results 

Characterization of Pump and Laser Intensity 

The three-level DPAL system requires bleaching of the pump transition, which 

depends critically on pump intensity.  To determine the spatial characteristics of the 

pump and laser beams, and define the spatial mode overlap, the spot sizes of both beams 

were recorded.  For the pump beam, the spots were measured at 2.54 and 50 cm in front 

of the gain medium, with the vertical distribution at 2.54 cm illustrated in Figure 14. At 

this distance, the beam is nearly circular with radii of 1.26 mm vertically and 1.1 mm 

horizontally and highly collimated within the resonator.  The Rb laser beam profiles were 

observed at 10 cm and 22.7 cm externally from the output coupler.  At 10 cm the beam 
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was observed as 1.62 (V) x 1.47 (H) mm with the horizontal distribution shown in Figure 

14.   

At 22.7 cm, the beam was larger; 2.35 x 2.00 mm.  Assuming the beam is 

symmetrical about the flat output coupler, the size of the laser beam inside the resonator 

is illustrated in Figure 13.  Note that the measured laser spot sizes are considerably larger 

than the TEM00 cavity mode. The pumped volume of 0.57 cm3 is larger than the laser 

beam volume of 0.32 cm3, suggesting a mode overlap of ηmode ≅ 0.56.  While higher 

mode overlaps have been achieved for cw pumps, ηmode = 0.6 - 0.8,[5,42,18,54,47] the 

current configuration is comparable to most other demonstrations and sufficient to well 

characterize scaling performance. 

The temporal nature of the pump and laser intensities is illustrated in Figure 15.  

The pump pulse duration (FWHM) is very nearly 100 ns, with a Gaussian shape 

marginally skewed to early times.  For a pump energy of 0.2 mJ/pulse, the corresponding 

incident pump intensity is 46.5 kW/cm2.  Of course, this intensity is averaged both 

spatially and temporally across the pulse.  The laser output pulse is also shown in Figure 

15, illustrating a quasi steady response to the pump intensity.  Indeed, a simplified model 

of the system based on longitudinally average number density and cw excitation [8] will 

be compared to the present results. 
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Figure 14.  Measured beam spot sizes: (○) vertical distribution of pump laser beam 

at 2.54 cm in front of the gain medium and (�) horizontal distribution of the Rb 
laser at 10 cm from the output coupler. 

 
 
 

 
Figure 15.  Temporal shapes for the (�) pump laser and (� ) Rb laser intensities.  
The instantaneous laser efficiency (○) is defined by the ratio of the Rb and pump 

intensities. 
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Slope Efficiency and Threshold Performance 

The rubidium laser output intensity as a function of pump intensity for several cell 

temperatures between 379 – 393 K and the two output coupler reflectivities of 23% and 

32% is provided in Figure 16 and Figure 17.   

Threshold varies from 9.6 - 16.6 μJ/pulse corresponding to the fairly high 

intensities required to bleach the sample (1.3 - 2.2 kW/cm2).  The experiments 

corresponding to the data collections shown in Figures 16-17 were pumped with 

intensities up to 20 times the threshold values.  For another set of experiments, a DLM-

100 pump laser with higher input intensity was employed and scaling to 32.8 times 

threshold was achieved.  Figure 18 illustrates these conditions with a threshold of 9.15 

μJ/pulse and a maximum output energy of 69.5 μJ/pulse.  Linear scaling to 32.8 times 

threshold is demonstrated, suggesting no second order kinetic or optical processes that 

degrade DPAL performance in this region.  At these pump intensities the overall 

efficiency loss due to threshold values is 3%. 

The slope efficiencies of 0.39 - 0.49 depend on both alkali concentration and out-

coupling fraction, as seen in Figure 19.   
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Figure 16.  Rb laser output energy per pulse as a function of input laser energy for 
the 32% output coupler and cell temperatures of (X) 393 K, (� ) 390 K, (�) 387 K, 

and (○) 382 K. 
 
 

 
Figure 17.  Rb laser output energy per pulse as a function of input laser energy for 

the 23% output coupler and cell temperatures of (�) 384 K, (� ) 382 K, and 
(○) 379 K. 
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Figure 18.  Scaling of Rb laser to 32.8 times threshold for a 20% output coupler and 

373 K cell filled with 200 Torr helium and 300 Torr ethane. 
 
 

 
Figure 19.  Slope efficiency for (○) 32% output coupler and (�) 23% output coupler. 
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Despite the cluster of similar results in Figure 16 and Figure 17, a significant dependence 

on gain cell temperatures and resonator conditions is observed.  Note that the slope 

efficiency for the 32% output coupler appears to approach a limiting value near 50%. 

This limit is just below the product of the quantum efficiency, ηqe = 0.98, and the mode 

overlap, ηmode = 0.56.  With higher output coupling (lower reflectivity), the slope 

efficiency is somewhat reduced.  A nonlinear response at high pump intensities is 

observed in the 379 K data in Figure 17.  The curvature in the data is a result of laser 

output power being limited by concentrations of either alkali or spin-orbit gas.  Future 

experiments will attempt to determine whether an increase in spin orbit gas or alkali 

concentration will eliminate the curvature under similar conditions. 

Discussion 

Interpretation of the present results is aided by the recently reported analytical 

model for DPAL systems by Hager et al.[8]  The quasi-two level limit for narrow band, 

cw excitation represents ideal performance and the output intensity, Ilase,  is predicted as: 

 ( )lase slope Pin thI I Iη= −  (6)         

where IPin  is the pump intensity and Ith is the pump intensity to reach lasing threshold.  

The slope efficiency is developed as: 
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( )( )
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where  

r  = output coupler mirror reflectivity (23% or 32%)  
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t = polarizing beam splitter window transmission (~95%) 

gth = threshold gain (loss) coefficient = - ln(rt4)/2lc 

lg = gain length = 12.7 cm 

lc = cavity length = 40 cm 

The absorption in the presence of lasing is dependent on both alkali concentration 

and cavity losses: 
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(8)      

where 

13 312σ σ= =  cross-section for absorption on the pump, D2, transition 

21σ = cross-section for stimulated emission on lasing, D1, transition 

n = total Rb concentration 

θ = ΔE32 / kT 

ΔE32 = spin orbit splitting =237 cm-1 

k = Boltzmann’s constant 

In the quasi-two level limit, the population ratio in the pumped, n3, state relative 

to the population in the upper laser level, n2, is determined by the detail balance ratio 

3 2 2 0.82n n e θ−= =  near T = 373 K. 

The slope efficiencies reported in Figure 19 can be recast in terms of the fraction 

of the incident photons absorbed. An analytic model for DPAL performance [8] based on 
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the quasi-two level approximation, where very fast spin-orbit relaxation rate produces a 

statistical distribution between the pumped and upper laser levels, predicts the absorbance 

on the pump transition, A, as:  
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Where the limiting value of the slope efficiency is defined as 
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  . (10)       

Figure 20 illustrates the linear dependence of absorbance on alkali concentration. The 

rubidium concentrations are predicted from the Rb finger wall temperature using the 

known vapor pressure curves.[2]  At T=382 K the concentration is 1.05 x 1013 atoms/cm3. 

The error bounds for the absorbance grow dramatically as the slope efficiency approaches 

the limiting value ηo. By constraining the data for both output couplers to share a 

common slope and constraining ηo = 0.49, the effective absorption cross-section of 

4.5 ± 0.5 x 10-14 cm2 is obtained.  This absorption cross-section is about 7 times less than 

predicted by the Lorentzian profile in Figure 12.  
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Figure 20.  Slope efficiency reinterpreted as absorbance for (○) 32% output coupler 

and (�) 23% output coupler. 
 
 
 

Several factors may contribute to this discrepancy.  First, the broadband nature of 

the pump source must be averaged across the absorption feature.  For the spectral shapes 

presented in Figure 12, the average cross-section is reduced by a factor of two from the 

peak.  However, the averaging would be significantly modified by bleaching in the 

presence of lasing and a thorough analysis of the absorbance under broadband excitation 

for the DPAL system is required.  Secondly, the measured wall temperature may over-

estimate the vapor pressure.  Indeed, a 10 C variance in temperature would lead to a 

factor of two change in vapor pressure.[2]  Third, the temporal dynamics of this pulsed 

system produces a temporally evolving efficiency, as shown in Figure 15.  Finally, 
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localized heating within the pumped volume could produce decreased concentrations of 

both alkali and spin-orbit relaxer on axis, leading to reduced output energy. 

The two intercepts in Figure 20 yield threshold gains of gth = 0.004 and 0.010  

cm-1 for the 32% and 23% output couplers, respectively.  These threshold values are less 

than the expected values of 0.014 – 0.018 cm-1 for no transmission losses, t = 1.  

Although the absolute values of the thresholds deviate from the predicted values, the 

difference for both the predicted and measured values are similar.  Threshold is more 

directly evaluated in Figure 21, where the dependence on alkali concentration is predicted 

as:[8] 
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where the reference intensity is related to the spontaneous emission and fraction of 

observed photons as: 
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(12) 

and 

τ = averaged radiative lifetime for the 2P3/2,1/2 manifold = 27 ns 

no =  reference Rb concentration = 1 x 1013 atoms/cm3 

hνp = pump photon energy = 1.6 eV  

 

A plot of the observed thresholds as a function of Rb concentration is shown in 

Figure 21.   
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Figure 21.  Threshold pump intensities for (○) 32% output coupler and (�) 23% 

output coupler. 
 
 
 
The shaded data point in Figure 21 was from a data collection set with very high 

uncertainty associated with the threshold value, and was excluded while interpreting the 

data.  To achieve a unit slope, the reference intensity must be reduced by 67%.  This 

result is consistent with a reduction of the on-axis Rb concentration (reduced effective 

absorption cross-section) observed from the analysis of the slope efficiencies.  The 

common intercept of the 32% output coupler data in Figure 21 is consistent with a 

threshold of gth = 0.066 cm-1, corresponding to a transmission loss at each surface of the 

beam splitter of t = 0.89.  There is insufficient data to determine gth for the 23% output 

coupler. 
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Conclusions 

Scaling of pump intensity for pulsed laser excitation of a rubidium D2 laser to 

32.8 times threshold has been achieved while maintaining a linear response in output 

intensity. Threshold losses are reduced to ~ 3%, a significant improvement from 

previously achieved threshold losses of 7 – 50%.  No evidence for second order kinetics 

is evident and near ideal performance is achieved, with the exception of mode overlap. 

That is, no deviation from linear scaling with pump intensity is observed. Beam spot sizes 

are critical to assessing laser performance and reports of power scaling without intensity 

information are often difficult to evaluate. 

Slope efficiency, expressed as absorbance, scales linearly with alkali 

concentration.  The quasi-two level analytic model accurately represents the data; 

however the effective cross-section is 7 times smaller than anticipated.  We recommend 

several efforts to resolve this discrepancy: (1) the development of a pulsed laser model 

that includes the effects of broad band excitation similar to the CW model presented by 

Beach et al.[5], (2) measurements of the alkali concentration within the pumped volume, 

and (3) examination of the temporal dynamics with resolution sufficient to examine the 

bleaching dynamics.  The DPAL system continues to perform near the ideal limit, even 

for the scaled conditions currently presented. 
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IV.  Temporal Dynamics of an Optically Pumped Pulsed Alkali Laser at High Pump 

Intensity 

Introduction 

The Diode Pumped Alkali Laser (DPAL) system originally demonstrated by 

Krupke is a three level laser pumped by diode bars on an alkali’s D2 transition, exciting 

the first 2P3/2 state of the alkali atom [11, 5].  Collisional relaxation to the 2P1/2 state is 

accomplished with a spin orbit relaxing gas such as ethane or methane, while pressure 

broadening of the absorption line has routinely been accomplished with He.  The excited 

alkali atom then lases on the D1 line back to the ground state.  Terminating the laser level 

at the ground state requires the gain volume to be fully bleached before achieving an 

inversion between the 2P1/2 and 2S1/2 states, resulting in threshold values of ~1 kW/cm2 

[16, 42, 18, 43, 8]. 

Early laser demonstrations achieved laser output powers of 1-3 W in both 

rubidium and cesium with slope efficiencies as high as 82% [16, 42, 18].  These early 

demonstrations also reported problems with soot deposition on the gain volume windows 

due to an interaction between the ethane or methane when temperatures were over 393 K 

driving research into carbon free spin orbit relaxing gases [44]. Alkali lasers using He4 or 

He3 as the spin orbit relaxer and pressure broadening gas have been demonstrated with 

both rubidium and potassium [44, 36, 52].  More recently cw output powers as high as 

145 W with in-band slope efficiencies of 28% have been reported [53].  Additionally, our 

recent work with a similar laser system achieved linear performance while pumping 32.8 

times the threshold value [30]. 



41 

Achieving optimum performance in a DPAL device requires the spin orbit 

relaxation rate be much faster than the pump excitation rate.   Most reported DPALs 

experiments have been operated under these conditions.  The most notable exception is a 

high power experiment that exhibited a linear slope efficiency when the pump duration 

was 0.1 s, yet under CW conditions, output power was drastically reduced [40].  While 

the cause of this degradation is unknown, lower alkali and spin orbit gas concentrations 

driven by on axis heating of the gain volume would exhibit a similar behavior [48].   

A three-level model for DPAL performance has been developed [8] extending the 

early model by Beach et al.[5] and applied to a broadband, pulsed potassium laser [54].  

Most prior DPAL demonstrations have not been extensively characterized to benchmark 

the model.  Recently, the model was validated with respect to the scaling of alkali 

concentration for a Rb laser [30].  In the present work we show the model is capable of 

predicting the temporal dynamics of the laser at high pump intensity and poor spin-orbit 

relaxation conditions with a single set of device parameters.  The characterization of 

slope efficiency and threshold is accomplished with the results from a single pulse and 

reveal the effects of bottlenecking. 

We also observe the Rb laser performance is dramatically improved with the 

addition of helium, even when the pressure broadening rate is held constant and the spin-

orbit relaxation rate is reduced.  These results are quantitatively interpreted as improved 

thermal transport when helium is present. 
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Experimental Setup 

A frequency doubled Nd:YAG laser (Photonics Industries DML-100 or a 

Quantronix Eagle) pumped cryogenically cooled KML Ti:Sapphire laser was the 

excitation source for a rubidium laser, as illustrated in Figure 22. 

 
 

 
Figure 22.  Experimental setup. 

 
 

The Ti:Sapphire laser produced ~100 ns pulses, at a 10 kHz repetition rate with an 

average power of up to 20 W.  The power delivered to the alkali cell was adjusted by 

rotating the polarization of the pump beam with a half wave plate relative to the 

polarizing beam splitter in the laser cavity and was varied between threshold (< 100 mW) 

and 3.5 W, or 0 – 0.35 mJ/pulse. The spectral widths of the Ti:Sapphire when pumped by 

the DML-100 and Nd:YAG were measured with a Yokogawa AQ6370 optical spectrum 

analyzer as 44-54 GHz and 34.5 GHz respectively, and were spectrally broad compared 

to the pressure broadened absorption features which varied between 11.8 GHz and 15.7 

GHz.  The bandwidth while incorporating the DML-100 pump source is shown in Figure 

23. 
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Figure 23.  Bandwidth of (○) Ti:Sapphire pump when DML-100 green pump source 

was used with  ~ 42 GHz wide (-) Gaussian and a (-) Lorentzian with a typical 
pressure broadened absorption line. 

 
 
 
A 12.7 cm long Brewster angled glass cell 2.5 cm in diameter contained the 

rubidium vapor and was housed in an aluminum oven to provide temperature control.  

The glass cell contained a rubidium stem attached to the bottom which housed the 

rubidium and was independently heated from the oven.  The temperature of the stem 

drove the number density of the alkali in the gain volume, which was held at a 

temperature 3oC higher than the stem to prevent rubidium condensation on the quartz 

windows.  The stem temperature was varied between 80oC and 120oC.  To explore the 

DPALs model robustness, the types and concentrations of both spin orbit relaxing gases 

and pressure broadening gases were varied.  Either ethane or methane was used as both 

the spin orbit gas and pressure broadening gas with pressures between 450 Torr and 
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600 Torr.  A combination of ethane and helium was used with a helium pressure of 

200 Torr to provide some pressure broadening and methane pressures of either 300 Torr 

or 450 Torr to both pressure-broaden the absorption line and spin orbit couple the 2P3/2 

and 2P1/2 states.   

The rubidium laser cavity was 0.4 m long and was formed by a high reflector with 

a 0.5 m radius of curvature and a flat output coupler with either, 20%, 23%, 32%, 50%, 

or 70% reflectivity.  Pump beam spot sizes were recorded with a Newport LBP-HR beam 

profiler just before the laser cavity for the DML-100 and Nd:YAG were 0.09 cm and 

0.11 cm respectively.  The alkali laser beam spot sizes were recorded for both 

experimental setups at several locations and as expected diverged after the output coupler 

mirror and were used to estimate the pump and laser mode overlap. 

The pump laser wavelength was centered on the 2S1/2 – 2P3/2 (780 nm) transition 

by maximizing the ratio of the 780 nm and 795 nm (2P1/2 – 2S1/2) fluorescence from a 

separate rubidium vapor cell at 80oC using an Ocean Optics USB4000 spectrometer.  The 

average pump power was recorded with a Ophir model L30A-SH-V1 power meter 

between the polarizing beam splitter and the rubidium cell.  When pumping with the 

Nd:YAG laser, output power was recorded with the same power meter just after the 

output coupler and when pumping with the DLM-100 a second L30A-SH-V1 power 

meter was used in a similar location.  Finally, the temporal characteristics of both the 

pump and alkali laser beams were simultaneously recorded on an Agilent 1 GHz 

oscilloscope using two New Focus model 1621 silicon nanosecond photodetectors with a 

1 ns risetime. 
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Results 

Dependence of Laser Power on Alkali Concentrations 

Laser output power as a function of pump input power was recorded with pump 

powers, Pin, between threshold and 2 W in 100 mW increments. Thirty different sets of 

conditions varying either temperature, T, output coupler reflectivity, Roc, or type and 

concentration of buffer gases, PEthane or PHe were examined.  In some cases, pump powers 

above 2 W were used in increments of 500 mW and reached as high as 3.5 W.  Laser 

performance for several cell temperatures is shown in Figure 24, where PEthane = 450 Torr 

filled at room temperature and Roc = 20%.   

 

 
Figure 24.  Dependence of output power on input power with PEthane=450Torr and 
Roc=20%.  Cell temperatures of (X) 80oC, (�) 90oC, (○) 100oC, (▲) 110oC, and () 

120oC are reported. 
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The temperatures of the rubidium finger shown in Figure 24 range from 80oC to 

120oC in steps of 10oC resulting in rubidium number densities, NRb, of between 1.5 – 20 

x1012 atoms/cm3.  Similar results were seen with different values of Roc and PEthane.  At 

the highest temperatures laser performance was degraded near threshold and exhibited 

curvature in the data which will be discussed in later sections.  In all cases when  Roc = 

20%, at T=110oC the rubidium laser reached its asymptotic limit and increasing the 

temperature further no longer improved slope efficiency and instead degraded 

performance at lower powers as a result of the threshold value increasing. 

 
Laser Dynamics 

The temporal profiles of the pump pulse and the rubidium laser pulse were 

collected at every power setting for all of the various conditions of temperature, output 

coupler reflectivity, and spin orbit and pressure broadening gas combinations.  

Representative pulse shapes for both the pump and laser are shown in Figure 25.  To 

effectively compare the pulse shapes of the pump and laser pulse, each was normalized to 

the energy per pulse derived from the average power measurements.   The Rb laser pulse 

does follow the pump pulse with a FWHM duration of 97 ns.  The shape of the pump 

pulse deviates sufficiently from a Gaussian to justify the use of a six parameter Pearson 

IV equation shown below, 

( )
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For a typical pump pulse, the fit parameters are on the order of, 44.2 10a −= − × ,

25.1 10b −= × , 85.5 10c −= × , 88.1 10d −= × , 2.9e = , and 2.1f = − .  At the maximum pump 

power employed, the system operated with a peak intensity of 32.8 times threshold.  The 

laser pulse reaches threshold at 180 ns with 111 kW of peak power and stays above 

threshold until 408 ns.  

   
 

 
Figure 25.  Temporal profiles of the (○) pump and (�) laser pulses with 
PEthane=450 Torr and PHe=0 Torr and Roc=20%, T=100oC and Pin=2 W 

(0.2 mJ/pulse).  Model temporal profiles of (-) pump, (-) laser convolved with 
detector response, and (-) laser with no convolution 

 
 
 

The pump pulse in the model closely matches the collected pump pulse shape.  

The output laser pulse calculated from the model is overlaid with the measured laser 

pulse in Figure 25.  Although the model matches the data very well, there is a noticeable 

deviation between the model and the data in the wings.  Initially, the model exhibits a 
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bump which corresponds to the predicted relaxation oscillations, and at the end of the 

pulse, the model exhibits a faster decay.  Both of these deviations are likely due to 

uncertainty in the detector response function which was not measured.  

The instantaneous efficiency, Pl/Pp, provides a measure of the temporally 

changing laser efficiency.  Figure 26 demonstrates the temporal dependence of the laser 

efficiency during the lifecycle of the pump pulse.   

 
Figure 26.  (○) Instantaneous efficiency of the rubidium laser during the lifetime of 

the pulse  pump and (�) values when the pump is below threshold with 
PEthane=300 Torr and PHe=200 Torr and Roc=20%, T=120oC and Pin=3.5 W 

(0.35 mJ/pulse). (�)  92 ns pump pulse at 150 µJ/pulse, (�) 166 ns pump pulse at 
160 µJ/pulse. 

 

As the laser pulse turns on, Il/Ip quickly increases to a limit of 0.353.  This is in 

good agreement with the slope efficiency measurement from a linear fit to the power in 

vs. power out data set under these conditions  of 0.35.  The tail end of the Il/Ip plot does 
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not immediately return to a value of zero and produces numerical artifacts when the 

pump laser has dropped below the threshold value.  Although the efficiency changes 

during the lifetime of the pulse, it is clear from Figure 26 that the laser is operating in a 

quasi steady state regime under these conditions.   Additionally, Figure 26 demonstrates 

instantaneous efficiency for two pulses which had nearly identical energies per pulse, 

0.15 and 0.16 µJ, with varying temporal widths, 92 and 166 ns.  The different pump pulse 

shape results in a decrease in efficiency with the long pulse. 

Just as several of the power in vs. power out plots in Figure 24 deviate from the 

asymptotic limit of slope efficiency by curving away, the instantaneous efficiency 

similarly deviates from the limiting value at the highest pulse intensities.  Figure 27 

demonstrates the instantaneous efficiencies for several input pump powers, with PEthane = 

600 Torr and T = 100oC.  Under these conditions, the efficiency only reaches 23%, less 

than 35% shown in Figure 26, since the temperature is lower resulting in a lower alkali 

number density and reducing output power.  At Pin = 2 W, Il/Ip reaches a plateau around 

0.23, and when Pin = 3 W, the Il/Ip plots decrease to 0.18 at the center of the pulse.   
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Figure 27.  Instantaneous efficiencies with Pin = (○) 0.5 W, (� ) 1 W, (� ) 2 W, and 

(�) 3 W.  Cell conditions of T=100oC, Roc=20%, and PEthane=600 Torr. 
 

 

 Three Level Analytic Model 

 A three-level analytic DPAL model has recently been developed [8] and applied 

to pulsed potassium[54] and quasi cw rubidium [30] laser demonstrations.  This model is 

adequate to describe all the output laser dynamics observed for the broad range of gain 

cell conditions in the present study, as discussed below.  Application of the model to gain 

cells with helium buffer gases requires a modification to the alkali concentration and is 

further interpreted as a thermal effect. 

 The model uses longitudinally averaged number densities to predict cw or 

temporally evolving output intensities, including conditions where the spin-orbit 

relaxation rate limits performance.  Determining the number of absorbed pump photons 
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via the longitudinally averaged pump intensity, ( )tΩ , requires the solution of a 

transcendental equation: 

( ) ( )
( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( )( )( )2

31 3 1 31 3 1
31 3 1

2 1 1 2
2

P
g p p P g

g

I t
t Exp n t n t l t t r Exp n t n t l

n t n t l
σ σ

σ

 
Ω = − − + −  −          

(14)
 

Where the populations in the ground 2S1/2 state, ( )1n t , pumped 2P3/2 state, ( )3n t , and 

upper laser 2P1/2, ( )2n t , are implicitly a function of the pump intensity and specified by 

the standard laser rate equations: 

 ( ) ( )1
31 3 1 21 2 1 2 21 3 312

p L

dn n n n n n n
dt h h

σ σ
ν ν
Ω Ψ

= − + − + Γ + Γ  (15) 
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σ γ θ
ν
Ψ

= − − + − − − Γ  (16) 

 ( ) ( )( )3
31 3 1 3 2 3 312 2mix

p

dn n n n Exp n n
dt h

σ γ θ
ν
Ω

= − − − − − − Γ  (17) 

The material and cavity parameters are defined as: 

pt =window transmission loss per pass 

pr = mirror reflectivity at the pump wavelength 

gl = gain length = 12.7 cm 

pI = incident pump intensity 

31σ = stimulated emission cross-section for the pump transition 

21σ = stimulated emission cross-section for the lasing transition 

21Γ = 3.61x107  s-1 (assumes no quenching) 

31Γ =3.81x107  s-1 (assumes no quenching) 

mixγ = spin-orbit mixing rate = 4.56-9.14 x109 s-1 (depending on gas mixture) 

21E
kT

θ ∆
= =0.91  at T=376K 

n = rubidium concentration 1 2 3n n n= + + = 0.15 – 2.01 X 1013 atoms/cm3 
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The average intracavity DPAL laser intensity, Ψ , is amplified via stimulated emission 

from the spontaneous noise and limited by output coupling and cavity losses:[9] 

 ( ) ( )( )( )( )
2

4 2 21
21 2 10 2 1 L

g
RT g

n c hd rT Exp n t n t l
dt l

σ νσ
τ

Ψ Ψ = = − − +   (18) 

where  

r = output coupler reflectivity 
t = transmission loss at the laser wavelength 

2RT gl cτ = =2.5 ns 

For broadband excitation, the spectral dependence of the average pump intensity must be 

averaged with the absorption lineshape:[8] 
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(19) 

 

where 

( )f ν = pump laser lineshape with Gaussian width (FWHM), Pν∆ = 34 – 54 GHz 

( ) ( ) ( )( )31 31og gσ ν ν ν σ=  

( )g ν = sum of Voight lineshapes for hyperfine split D2 line [19] with linewidth, aν∆  

At cell pressures near 1 atmosphere, the absorption lineshape may be approximated by a 

single Lorentzian with an error of less the 7% [19].  For the current buffer gas 

compositions and pressures, the absorption linewidth is aν∆ = 44-54 GHz.  Figure 23 

illustrates the pump laser and absorption lineshapes used in the modeling.  A comparison 

of the model with the laser output pulse is provided in Figure 25. 

The output laser pulse from the model was convolved with a 10ns wide detector response 

function to incorporate the effects of the detector on the measured laser pulses. 
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The model input parameters that are adjusted when attempting to match the 

observed data are the frequency bandwidth of the pump laser, Pν∆ , the alkali number 

density, Rbn , transmission through the polarizing beam splitter, t , mode overlap between 

the pump and laser, modeη , and the beam waist of the pump, oω .  From experimental 

measurements, approximate values for all of these parameters are known, and only small 

deviations are required to match the model with the experimental data.  The expected 

values for all of these parameters along with the values used in the model are shown in 

Table 8. 

 
 
 

Table 8.   Laser performance parameters (no helium). 

Parameter Symbol Expected Value Modeled Value 

Frequency bandwidth ( )GHzν∆  44-54  100 

Alkali number density n Derived from cell 
temperature, T  3 CT ±   

Transmission through PBS t  0.96 0.99 

Mode overlap modeη  0.58 0.405 

Pump beam waist ( )cmoω  .085 .095 

 

 
 

Instantaneous Efficiency 

An alternative approach to analyze the temporal profiles involves correlating the 

pump profiles and laser profiles at each instant.  Analyzing the data in this way provides 

a slope efficiency curve which increases as the pump power grows, and then decreases as 

the pump power returns to zero.  Analyzing a single set of pulse shapes allows rubidium 
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laser performance measurements from threshold through the peak power in the pulse.  

Figure 28 compares the instantaneous slope efficiencies of the collected data to the model 

for the following conditions: PEthane = 450Torr, Roc = 20%, T = 100oC, and Pin = 1.99W.   

 
 

  
Figure 28.  Instantaneous laser power vs. pump power for the model (-) and 

data (○). 
 

 

Note that in both the model and the data, the slope efficiency curves do not return to zero 

along their initial paths.  This is due to the cavity photon buildup time,  ~7 ns, which 

results in a delay between transferring pump energy into laser energy.  When a 5 ns 

photon buildup is incorporated to the pump pulse, the slope efficiency curve returns to 

the origin along its initial path as shown in Figure 29.   
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Figure 29.  Instantaneous laser power vs. pump power for the model (-) and data 

(○), with a 5 ns delay of the pump pulse. 
 

 

Figure 30 demonstrates the instantaneous laser power as a function of 

instantaneous pump power for identical conditions at two different average input pump 

powers, and the lower power data is consistent with the initial higher power data.  Since 

the lower power case is consistent with the higher power, the three-level model must only 

be validated with the highest powers collected. 
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Figure 30.  Instantaneous laser power vs. pump power with (●)1 W and (○)3 W of 

average pump power. 
 
 
 
Figure 31 compares the experimentally determined instantaneous slope 

efficiencies to the predicted model results using the parameters presented in Table 8with 

four sets of operating conditions varying cell temperature, ethane pressure, and output 

coupler reflectivity.  For all four conditions presented, the model performs reasonably 

well.  For the 90oC data case, the model begins to diverge from the collected data.  We 

believe this is a result of the model variable parameters masking the thermal loading that 

is occurring in the gain medium, so that at low alkali concentrations the ability of the 

parameters to account for thermal loading is decreased. 
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Figure 31.  Instantaneous laser power vs. pump power data compared to model 
results (� ) for the following conditions,  (○) PEthane = 600 Torr, Roc=20%, T=100oC,  

(� ) PEthane = 450 Torr, Roc=20%, T=100oC,  (�) PEthane = 450 Torr, Roc=50%, 
T=100oC,  (�) PEthane = 600 Torr, Roc=20%, T=90oC.  All cases used the same model 

fit parameters from Table 8. 
 

 
 
Laser performance increase with helium 

  Four sets of conditions were analyzed to determine buffer gas effects on laser 

performance using the DML-100 pump laser.  The four combinations of spin orbit and 

pressure broadening gases are provided in Table 9. 
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Table 9.  Buffer gas pressures, pressure broadened absorption line, and efficiencies 
for data presented in Figure 31. 

 #1(○) #2(●) #3(�) #4(�) 
PHe  (Torr) 200 0 200 0 
PEthane (Torr) 300 450 450 600 

aν∆ (GHz) 11.9 11.8 15.8 15.7 

    120o
peak T Cη =  .331 .297 .329 .318 

    100o
peak T Cη =  .239 .202 .247 .208 

 

 

The pressure broadening rates for C2H6 and He for the D2 line of rubidium are 26.2 and 

20.0 MHz/Torr respectively [38, 22]. The resulting homogenous linewidth is  ~12 GHz 

with both PEthane=450 Torr only and the combination of PEthane=300 Torr and 

PHe=200 Torr.  Similarly, a linewidth of ~16 GHz resulted with the other two sets of 

buffer gases.  With all four buffer gas settings, alkali stem temperatures of 90oC, 100oC, 

and 120oC were utilized.  Yielding n = 0.31-2.01 x1013 atoms/cm3.  The average output 

power as a function of pump power is shown in Figure 32 and 33 for T=120 and 100 C 

respectively.  The corresponding instantaneous efficiencies for the highest pump powers 

are shown in Figure 34. 
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Figure 32.  Output vs input power at T=120C and Roc=20%.  Buffer gases of 

(○)300 Torr C2H6 / 200 Torr He, (�)450 Torr C2H6 / 200 Torr He, (●)450 Torr C2H6, 
and (� )600 Torr C2H6 are shown. 

 
 

 
Figure 33.  Dependence of output power on input power at T=100C and Roc=20%.  
Buffer gases of (○) 300 Torr C2H6

 / 200 Torr He, (�) 450 Torr C2H6 / 200 Torr He, 
(●) 450 Torr C2H6, and (� ) 600 Torr C2H6 are shown. 
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Several general observations regarding the rubidium laser performance can be 

summarized by comparing Figures 31-32.  First, output power is less sensitive to buffer 

gas pressure at elevated alkali concentrations. The system can process more pump 

photons per second even for a given spin-orbit relaxation rate due to high number of 

cycling atoms.  At lower alkali concentrations, the system bottlenecks due to slow spin 

orbit relaxation and the output power is sensitive to relaxation rate. Second, for the cases 

where the broadening and spin-orbit rates are higher (more ethane), the efficiency is 

improved.  The increased cycling rate improves performance more than the minimal 

decrease in effective absorption cross-section. Third, curvature near threshold conditions 

is readily evident.  Given a spatially distributed pump beam, approximated by a Gaussian, 

the gain volume is bleached on line center allowing lasing to begin.  As pump intensity is 

increased, the entire pump beam begins to bleach through the gain volume, resulting in an 

increase of laser power.  Fourth, for conditions with the same broadening, but slower 

spin-orbit relaxation (increased helium) the efficiency increases.  This surprising result 

cannot be described by the present modeling without accounting for thermal effects. 

In an attempt to use the three level model [14] to quantify the on axis temperature 

increase, the model parameters were chosen to provide good agreement with the 300 Torr 

ethane and 200 Torr helium data, shown in Table 10.   

The instantaneous slope efficiency plots for both the data and model are shown in 

Figure 34 for both the 300 Torr C2H6
 / 200 Torr He combination and 450 Torr C2H6 

alone. 
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Table 10.   Laser performance parameters (with helium). 

Parameter Symbol Expected Value Modeled Value 

Frequency bandwidth ( )GHzν∆  44-54  100 

Alkali number density n Derived from cell 
temperature, T  3 CT ±   

Transmission through 
PBS t  0.96 0.99 

Mode overlap modeη  0.58 0.525 
Pump beam waist ( )cmoω  .085 .125 

 
 
 

 
Figure 34.  Instantaneous slope efficiency data compared to model with T=100C and 
Roc=20%.  Collected data with buffer gases of (○) 300 Torr C2H6

 / 200 Torr He, and 
(� ) 450 Torr C2H6 are shown, as well as model results for (� ) 300 Torr C2H6

 / 
200 Torr He, and (--) 450 Torr C2H6, additionally model results for (� ) 450 Torr 
C2H6 incorporating a 62.5% decrease in concentrations of alkali number density 

and spin orbit gas. 
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To achieve agreement between the data and model using the same parameters for 

the 450 Torr ethane case, the spin orbit coupling rate and the number density of alkali 

atoms were decreased by 62.5% and the results are shown in Figure 34.   A decrease in 

number density of this amount results from a density gradient from a temperature 

increase of 226oC.   

A simple heat diffusion model presented by Zhu et al. can also quantify the 

temperature increase [48].  The steady state heat conductive equation is, 

 
22

2

1 1 0
2

vqd T dT dT
dr r dr T dr κ

 + + + = 
 

 (20) 

Where κ  is the thermal conductivity, and vq is the heat power deposited in the volume 

given by, 
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=  (21) 

when pr w<  and 0vq =  everywhere else.  0.12α = is an approximation to the 

exponential absorption coefficient, 0.68η = is the heat conversion coefficient, z  is the 

linear position along the cell, and 0.08ow = is the pump beam radius.  The radial 

temperature profile for a cell filled with helium and one filled with ethane is 224oC, 

shown in Figure 35, demonstrating excellent agreement between the heat diffusion 

model, and the estimated temperature difference attained from the three-level model. 
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Figure 35.  Buffer gas temperature from heat conduction model, with ethane (●) and 
helium(●) in the cell. 

 
 

Conclusions 

The temporal pulse shapes of an alkali laser and their behavior under spin orbit 

and alkali number density limiting conditions have been demonstrated.  All laser 

performance reductions attributed to concentrations of buffer gas or alkali can be 

reversed by increasing those concentrations, implying no evidence of second order 

kinetics.  The three level DPAL model has accurately represented the collected temporal 

pulse shape data when only ethane or methane are in the gain medium.  However, the 

model does not predict the increase in laser performance with the addition of helium, 

potentially due to a reduction in the amount of on-axis heating.  The three level model 

indicated an on axis temperature increase of 226 oC is sufficient to explain the increase in 
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laser performance between ethane only and ethane helium mixtures.  The temperature 

increase is in good agreement with a simple thermal diffusion model under the 

experimental conditions. 
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V.  Blue and Infrared Stimulated Emission from Alkali Vapors Pumped Through 

Two-Photon Absorption 

 Introduction 

A new class of diode pumped lasers based on excitation of the D2 line and 

subsequent lasing on the D1 line in alkali atoms is receiving considerable attention.[11]   

Diode pumped alkali lasers (DPAL) have been demonstrated at 17 W with 53% slope 

efficiency in rubidium and 48 W (quasi-cw) with 52% efficiency in cesium.[40,41]  The 

lasers typically require: (1) high buffer gas pressures, ~ 1 atmosphere, to match the width 

of the absorption profile to the spectral lineshape of the diode pump source, and (2) a 

collision partner such as ethane at pressures of several hundred Torr to relax the 

population in the pumped 2P3/2 state to the upper laser 2P1/2 state.  The alkali atoms 

provide high absorption even at low concentration and a single atom may rapidly cycle 

under intense pump conditions, suggesting high power operation from a small gain 

volume. 

A similar approach has been attempted using multiple lasers to sequentially pump 

excited states of rubidium and cesium with the goal of lasing in the blue on the  

(n+1)2P3/2, 1/2 → (n)2S1/2 transitions.[4,24]  Two low power cw diode lasers, one tuned to 

the D2 line in cesium 6 2S1/2 → 6 2P3/2 at 852 nm, and the other to the 6 2P3/2 → 6 2D5/2 

transition at 917 nm yields a ~ 4 μW blue beam at 455 nm on the 7 2P3/2 → 6 2S1/2 

transition.[24]  Cascade through the infrared 6 2D5/2 → 7 2P3/2 at 15.1 μm presumably 

completes the pump cycle.  Such a source might find application for laser 
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communications through water,[21]  however, the two wavelength pump requirement 

adds complexity to the system.   

Lasing without inversion (LWI) has been demonstrated in rubidium via both a V-

type and sequential double resonance processes.[51,15,50,1]  In the sequential double 

resonance experiment, two 20 mW lasers at 780 and 776 nm produce a blue beam with 

power up to 40 μW by coherently coupling the 5S state with the 5P and 5D states.  

Detuning the 780 nm pump from the F” = 3 → F’=4 resonance by about 2 GHz allows for 

higher alkali concentration and maximizes the conversion efficiency at about 0.1%.[15]  

A collimated infrared field at 5.5 μm arising from the 5 2D5/2→ 6 2P3/2 transition is 

affected only marginally by the blue beam, but the blue field occurs only when the 

infrared field is present.[50]  Most recently, four wave mixing as the mechanism 

responsible for the blue light generation and the required phase matching conditions has 

been presented.[1] 

The infrared transitions are more easily inverted.  Continuous-wave lasing 

without a resonator was demonstrated in 1981 for both Rb and Cs at 1.3 – 3.1 μm by 

pumping in the blue on the second resonances, Rb 5 2S1/2 → 6 2P3/2,1/2 and Cs 6 2S1/2 → 7 

2P3/2,1/2.[25]  Lasing on 16 different IR lines was observed. The infrared gain-length 

product was about 30 and the beam divergence was about 10 mrad.[25] 

Another type of infrared alkali atom laser has been demonstrated based on energy 

transfer for optically excited alkali dimers.[32,26]  For example, broadband absorption to 

repulsive electronic states in the Cs2 yields prompt dissociation and the production of the 

Cs 5 2D5/2, 3/2 states. Lasing has been achieved at 3.01 and 3. 49 μm on the 5 2D5/2 → 6 

2P3/2 and 5 2D3/2 → 6 
2P1/2 transitions, respectively.[26]   Narrow band absorption at the 
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same pump wavelength, 584.5 nm, can produce the highly excited 9 2D5/2 state.  

Subsequent laser emission can be achieved at 2.43 – 8.66 μm.[26]  This system requires 

high alkali temperatures, ~ 500oC, to generate sufficient alkali dimer concentrations.   

The present work generates a blue beam using a single red laser tuned to the two photon 

absorption excitation of the (n) or (n+1) 2D3/2, 5/2 and (n+2) or (n+3) 2S1/2 states in Rb 

(n=5) and Cs (n=6), respectively.  Indeed, lasing is simultaneously achieved in the mid 

infrared and blue after excitation in the red via the processes illustrated in Figure 36. The 

system operates at low pressure without collisional energy transfer offering minimal heat 

load and requires only a single near infrared pump source.  Conversion efficiency in the 

blue is similar or better than the prior double resonance experiments. Several mid infrared 

lasing transitions in the 2-5 μm atmospheric transmission window are also available. 

 



68 

 
Figure 36.  Energy level diagram and lasing mechanism for (a) Rb and (b) Cs 

systems. 
 
 

Experimental Apparatus 

A schematic diagram of the laser apparatus is provided in Figure 37.  
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Figure 37.  Laser apparatus. 

 
 
 
A Spectra Physics Nd:YAG pumped Sirah dye laser with LDS-765 dye provided a 

tunable pump source from 745 – 785 nm with up to 100 mJ in 4 ns pulses at 10 Hz and a 

bandwidth of ~ 16 GHz.  The pump beam radius of ~ 3.5 mm and < 0.5 mrad divergence 

was not a TEM00 mode.  A 2.5 cm diameter by 7.5 cm long Triad technologies rubidium 

vapor cell with Pyrex windows was heated to 175 – 250 oC in an aluminum oven.  

Similarly, a 2.5 cm diameter by 5.0 cm long Triad technologies cesium vapor cell with 

Pyrex windows was heated to 175 – 200 oC.  Both were low pressure cells and contained 

no buffer gases. For rubidium, the 87Rb isotope was employed, while for cesium, the 

natural isotopic abundance was used.  

The transmitted pump and resulting stimulated beams were dispersed through a 

readily available BK7 prism and visually recorded with a Canon G9 CCD camera.  A fast 
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FND-100 photodiode behind a 500 nm short pass filter recorded the temporal nature of 

the blue beam on a 1 GHz oscilloscope.  Alternatively, a large area silicon detector was 

employed with Boxcar detection to record laser excitation spectra.  The spectral content 

of the blue beam was examined using a 0.5 m Triax monochromator verifying the blue 

ASE beams were a result of the (n+1)2P3/2, 1/2- (n)2S1/2 transitions.  Average power was 

measured with a Coherent LM-3 HTD or a Newport 818-SL power meter.  Time resolved 

side fluorescence from both the blue and red 2P – ground 2S transitions was also 

monitored via a Hamamatsu R943-02 PMT. A single pixel InSb detector was employed 

to detect the infrared beam for the cesium laser. The cesium cell window, InSb detector 

response, and IR filter provide an effective band pass of 2.0 – 2.5 μm with peak 

transmission of > 40%, allowing for detection of the IR beam.  The longer wavelengths 

of the rubidium system are blocked by the cell windows. 

Results 

Blue and Mid IR Beam Observations 

A blue beam with divergence angle of θ1/2 = 6 mrad was observed as the pump 

laser was tuned through the two photon absorption wavelengths in both rubidium and 

cesium.  A visible image of the blue beam and the transmitted far red pump laser spot 

recorded after the dispersing prism for the Cs cell is illustrated in Figure 38. The blue 

beam divergence is larger than the pump beam, < 0.5 mrad, but considerably smaller than 

the fluorescence divergence of 47 mrad.  A mid IR beam was also observed in Cs when 

the pump laser was tuned to the 7 2D3/2 – 6 2P1/2 and 7 2D5/2 – 6 2P3/2 transitions.   
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Figure 38.  Dispersed beams for the Cs cell in the forward direction.  The pump 

beam saturates the camera.  The mid IR spot was not imaged, but is schematically 
located by spatially scanning with the point InSb detector. 

 
 
 
The location and extent of the mid IR beam was determined by spatially scanning the 

InSb detector in the same dispersed image plane.  The location of the mid IR beam is 

schematically overlaid on the image of Figure 38.  To ensure the IR beams were near the 

expected values (2.34 �m and 2.43 �m spots for the 7 2D3/2 – 6 2P1/2 and 7 2D5/2 – 6 2P3/2 

transitions, respectively) a 2.5 �m long pass filter was employed and the infrared spot 

was no longer detected.   

To validate that the alkali atoms were pumped by two photon absorption, an 

excitation spectrum using the blue stimulated emission as the signal was performed.  The 

spectrum for a cesium cell at 200oC is shown in Figure 39.  
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Figure 39.  Cs blue spot intensity as a function of pump laser wavelength. 

 
 
 
The blue spot in cesium occurred when the pump was tuned to 743.2 nm, 767.2 nm, and 

767.8 nm, corresponding to the 6 2S1/2-9 2S1/2, 6 2S1/2-7 2D5/2, 6 2S1/2-7 2D3/2 transitions, 

respectively. A small leakage of the pump beam intensity through the blue band pass 

filter produces the observed baseline intensity. Similarly, the blue spots for rubidium 

occurred at pump wavelengths of 778.1, 778.2, and 760.1 nm as illustrated in Figure 40.  

The Rb spectrum also illustrates increased absorption of the pump beam at the D2 feature. 

No blue beam was observed when tuned to the D1 or D2 lines and the two photon lines 

are well outside of the wings of the D2 absorption.   
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Figure 40.  Rb laser excitation spectrum for a cell at T= 217 oC. 

 
 
 

Attenuation of the pump laser at the D2 resonance is reduced by two factors: (1) 

much of the pump bandwidth is outside of the absorption lineshape, and (2) the very 

intense pulsed laser bleaches the sample. At T = 200oC, the Rb concentration is ~ 1015 

atoms/cm3 and the optical density is very high, σD2[Rb] l > 104.  However, the attenuation 

illustrated in Figure 40 is only ~10%.  The pump spectral bandwidth of 16 GHz is about 

25 times larger than the unsaturated, hyperfine split, Doppler broadened D2 line.  

Additional broadening or absorption in the near wings may explain additional 

attenuation.  In Figure 39, the pump energy per pulse is 3 mJ, providing a pump intensity 

of ≅ 2 x 106 W/cm2, much higher than the saturation intensity of Isat = (hν/ σD2) A21  ≅ 5 

W/cm2.  With a saturation parameter of S = I/Isat ≅ 5 x 105, the sample is strongly 

bleached.  At 10% absorption and 3 mJ/pulse incident, the number of absorbed photons is 
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1.2 x 1015, nearly equal to the number of Rb atoms in the pumped volume.  A discussion 

of absorption at the two photon wavelengths is provided below. 

By spectrally resolving the stimulated emission for rubidium as in Figure 41, 

 
 

 
Figure 41.  Spectrally resolved blue beam intensity from the Rb cell, when pumped 

on the: (a) 5 2S1/2 – 7 2S1/2 line at 760.3 nm, and the (b) 5 2S1/2 – 5 2D3/2 line at 
778.1 nm. 

 
 
 
 we note that the 6 2P3/2 – 5 2S1/2 is 16 times more intense than the 6 2P1/2 – 5 2S1/2 

transition when pumping the 7 2S1/2 state. When pumping the 5 2D3/2 level, lasing was 
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limited to the 6 2P1/2 – 5 2S1/2 transition.  When pumping the 5 2D5/2 level, lasing was of 

course limited to the 6 2P3/2 – 5 2S1/2 transition due to optical selection rules.  Collisional 

relaxation between the spin-orbit split 6 2P3/2, 1/2  states is minimal at these low pressures 

and lasing follows the strongest optical transitions between the pumped and upper laser 

level.  Furthermore, collisional excitation of the upper laser level of the blue transition 

from the pumped level would be slow under the low pressure conditions. The mid IR 

stimulated emission appears necessary for the blue beam. 

The temporal dynamics of the blue spot are illustrated in Figure 42.  

 
 

 
Figure 42.  Temporal profiles of the: (o) pump laser and (∎) blue laser for Rb cell at 

T = 175oC pumped at 778.10 nm. 
 
 
 
The blue pulse is prompt, with minimal discernable delay of ~ 1 ns from the pump pulse 

indicating a very rapid cascade through the infrared transition.  The duration of the blue 
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beam is about 4 ns, closely following the pump pulse temporal profile.  In contrast, the 

blue side fluorescence shown in Figure 43 is long lived.  

 
 

 
Figure 43.  Temporal profile for the side fluorescence at 420 nm for the Rb cell at T 

= 175oC pumped at 778.2 nm. 
 
 
 
The side fluorescence decay profile is prompt and double-exponential with an initial 

decay of 0.11 μs, consistent with the radiative lifetime of 0.12 μs.[31]  A longer tail with 

decay rate of 0.53 μs is also evident.  The alkali cells are optically thick and radiation 

trapping along the un-pumped, radial direction is clearly evident.  

 
Threshold and Slope Efficiency in the Blue 

The energy in the blue beam pulse scales with pump energy and alkali 

concentration (cell temperature) as illustrated in Figure 44and Figure 45.  
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Figure 44.  Blue 6 2P3/2, 1/2 – 5 2S1/2 beam energy after pulsed laser pumping of the Rb 

5 2S1/2 – 5 2D5/2 transition at cell temperatures of: (Δ) 175 oC, (o) 200 oC and (⊡) 
250 oC. 

 

 

The blue beam exhibits a pump threshold for the Rb 5 2S1/2 – 5 2D5/2 transition of ~ 0.3 

mJ/pulse (2 x 105 W/cm2) and somewhat higher, ~1.5 mJ/pulse (1 x 106 W/cm2), for the 

Cs 6 2S1/2 – 7 2D3/2  transition.  Surprisingly, the threshold for Rb decreases by a factor of 

2.5 as the vapor pressure increases from 0.015 - 0.29 Torr.  A similar decrease in 

threshold at high Cs concentration is also observed.  
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Figure 45.  Blue 6 2P3/2, 1/2 – 5 2S1/2 beam energy after pulsed laser pumping of the Cs 

6 2S1/2 – 7 2D3/2 transition at cell temperatures of: (Δ) 175 oC and (o) 200 oC. 
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The blue transition slope efficiencies increase dramatically with alkali 

concentration, increasing from 0.03% to 0.5% for Rb as the cell temperature increases 

from T= 175 to 250 oC. The peak Rb efficiency of 0.5% is about 5 times larger than 

reported for the previous two-wavelength pump schemes.[15]  The efficiency for Cs is 

somewhat less, 0.02 – 0.06 % for T = 175 and 200 oC, despite the higher vapor pressure. 

Almost 10 μJ per pulse or 0.1 mW average power is achieved for the scaled Cs system.  

Both threshold and pump efficiency should depend on the absorption cross-

section. Typically two photon absorption cross-sections are quite low.  However, the 

cross-section for the Rb 5 2S1/2 – 5 2D5/2 has been calculated as 0.57 x 10-18 cm4/W [13] 

and measured as 4 x 10-20 cm4/W and 1.2 ± 0.5 x 10-18 cm4/W [39,6].  At the threshold 

pump energy of 0.3 mJ, the corresponding intensity is ~ 200 kW/cm2, yielding an 

effective absorption cross-section of 0.08 – 2.4 x 10-13 cm2, depending on which of the 

prior two-photon cross-sections is employed.  At T = 200 oC, the Rb concentration is 9.16 

x 1014 atoms/cm3 and the line center, unsaturated optical thickness of the two-photon 

absorption is high, σ2photon[Rb] l = 93 - 2792.  

Again, the optical density is reduced by both the mismatch between the narrow 

absorption feature and the broad band pump, and the effects of saturation. Indeed, the 

778.2 nm absorption in Rb at T = 200 oC was observed to be about 3%.  Thus, the slope 

efficiencies based on the number of absorbed photons is higher.  At 3 mJ/pulse (2 x 106 

W/cm2)  and 200 oC, the Rb blue output energy per pulse is 3 μJ.  For 3% of the incident 

photons absorbed, the blue energy corresponds to 3% of the absorbed pump energy.  The 

addition of a buffer gas to spectrally broaden the atomic absorption feature should lead to 

increased absorption and slope efficiency.  The output energy appears to be limited at 
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higher pump energies particularly when the alkali concentration is low.  A full 

description of bleaching and saturation will require a better determination of the two 

photon absorption cross-section and lineshapes and a thorough understanding of the 

kinetic processes.  Finally, recall that no optical cavity was used in the present 

experiment.  The high optical loss is probably suboptimal output coupling and efficiency 

may be increased with an appropriate resonator design. 

A comparison of the blue alkali performance relative to the standard DPAL 

system is illustrative.  The standard red DPAL typically exhibits a threshold at 4 

kW/cm2,[40,41,5] about 50 times less than the present results.  The two-photon 

absorption cross-section is between 2 and 60 times lower than the value for single photon 

absorption on the D2 line with broadening associated with 600 Torr of helium.  Thus, the 

relative thresholds appear consistent with the rather uncertain ratio of absorption cross-

sections. 

  
Infrared Lasers 

All of the current experiments were performed at low pressure with no added 

buffer gas and the transfer of population from the initially pumped 5 2D3/2, 5 2D5/2, and 7 

2S1/2 states of rubidium and the 7 2D3/2, 7 2D5/2, and 9 2S1/2 states of cesium to the upper 

blue laser level n=6 or 7 2P3/2,1/2 states occurs optically.  Given the minimal delay 

between the pump pulse and the appearance of the blue beam as illustrated in Figure 42, 

it appears that stimulated emission on the infrared transitions is required. Indeed, the 

pumped levels would immediately be inverted relative to the upper 2P1/2, 3/2 levels.  In 

cesium the energies associated with these transitions range between 1.94 �m and 2.43�m 
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and in rubidium 3.85 – 5.2 �m.  Using an InSb detector with two 1.5 �m long pass filters 

and a 2.5 �m short pass filter, the 2.34 �m and 2.43 �m spots from the 7 2D3/2 – 6 2P1/2 

and 7 2D5/2 – 6 2P3/2 transitions were observed. 

The intensity of the Cs infrared spot increased linearly with pump energy, with a 

very small threshold, as shown in Figure 46.  

 
Figure 46.  Infrared beam energy after pulsed laser pumping of the Cs 6 2S1/2 – 7 

2D3/2 transition at a cell temperature of (o) 185 oC. 
 

Since no population initially exists in the n=6 or 7 2P3/2,1/2 states, the inversion would be 

prompt.  The radiative lifetime of the Cs 7 2D5/2 state is about 88 ns[6] yielding a Doppler 

broadened stimulated emission cross-section of σIR ≅ 3 x 10-10 cm2. With a 100% loss per 

single pass, threshold is achieved at [Cs(7 2D5/2] ≅ 109 atoms/cm3.  Assuming every 
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absorbed photon leads to an inverted atom and 10% absorption, suggests an IR threshold 

pump energy of ~ 3 nJ/pulse (2 W/cm2). 

In contrast with the energy in the blue beam, the IR energy exhibits linear scaling 

with pump energy to 100 mJ.  At these highest pump energies, there are more photons 

incident than atoms in the pumped volume.  Given that the sample must be bleached at 

the lower threshold for the blue beams, it appears necessary that the atoms undergo a 

number of pump/IR/blue cycles over the short duration of the pump pulse.  The transit 

time for a photon along the beam axis in the gain medium is about 0.2 ns and more than 

10 cycles might be possible.  However, the rate limiting step in the cycle would seem to 

be the blue transition that exhibits decreased efficiency at higher pump energies.  A full 

interpretation of the IR and blue slope efficiencies await a thorough kinetic model of this 

system. 

Several mid-IR laser wavelengths appear achievable under two photon pumping.  

In rubidium the 5 2D5/2 → 6 2P3/2 and 5 2D3/2 → 6 2P1/2 transitions at 5.03 and 5.23 μm and 

the 7 2S1/2 → 6 2P3/2,1/2 transitions at 3.85 and 3.97 μm are evident in the present work.  

Likewise, Cs operates at 2.34 and 2.43 μm for the 7 2D5/2 → 7 2P3/2 and 7 2D3/2 → 7 2P1/2 

transitions and at 1.94 and 2.01 μm for the 9 2S1/2 → 7 2P3/2,1/2 transitions.  Additional 

wavelengths of 1.87 – 12.14 μm may also be available by pumping the 6D and 8S states 

of Rb and the 8S and 6D states of Cs. 

Conclusions 

Stimulated emission on the blue 2P – 2S transitions in Rb and Cs has been 

achieved by pumping at a single wavelength in the red via two photon absorption.  The 
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slope efficiency of 0.5% in Rb is considerably higher than achieved in the prior 

sequential double resonance experiments[15] and requires only a single wavelength pump 

source.  Incomplete (10%) absorption of the pump photons is an important contributor to 

the decreased efficiency and might be improved with narrow band pumping or pressure 

broadening.  Cascade lasing on the infrared transition followed by the blue transition 

offers no quantum defect and the potential for low heat loads.  There would also be no 

need for a spin orbit coupling gas, such as ethane, which has caused soot buildup 

problems in traditional DPALs cells at high temperature.[16]  It appears that the 

performance of this system can be enhanced by scaling to higher alkali concentrations, 

possible in a heat pipe configuration.  Threshold pump intensities are high, but the 

ultimate performance limits of this system have not been assessed.  Indeed, a full analysis 

of the kinetic mechanism is required to evaluate both the scaling and efficiency of this 

new system. Potential applications for this new laser system include underwater 

communications and infrared countermeasures such as blinding heat seeking missiles. 

 

Acknowledgements 

This work was funded by the High Energy Laser Joint Technology Office and Air 

Force Office of Scientific Research.  



84 

VI.  Conclusions and Recommendations 

 

Prior to this research, very little characterization of a DPALs device had been 

accomplished.  Most researchers were focused on achieving the highest possible slope 

efficiencies with a maximum amount of output power by selecting the optimum output 

coupling and temperatures for their cavity design.  Only one article considered laser 

performance with different output couplers and buffer gases, and then only varied the 

temperature to achieve the maximum output power.  Given the high levels of interest in 

the feasibility of scaling a DPAL to a tactical level kilowatt class device, a thorough 

understanding of the laser performance under a wide range of conditions is required and 

is provided through this research. 

In addition to a thorough characterization of DPALs, a robust model accurately 

representing the laser system is required.  AFIT, through Dr. Gordon Hager, has 

developed multiple DPAL models which incorporated all of the physics believed to be 

relevant in a DPALs three-level system.  However, the validation of these models, prior 

to this work, was accomplished through a comparison of laser output powers for a single 

set of laser parameters, which allows for the possibility of masking artifacts within the 

models. 

Furthermore, while studying the kinetics of alkali gases, a blue beam was 

produced in a low pressure alkali vapor under extremely high pump intensities.  Although 

attempts had been made previously to produce blue alkali lasers through sequential 

pumping in the red, and previous researchers had studied the two photon absorption 
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process in the alkalis, it is believed that no attempt had been made to produce a blue 

alkali laser through a two photon absorption. 

DPAL at High Pump Intensity 

During the course of this research, rubidium laser performance data was collected 

under a wide variety of conditions, varying the output coupler reflectivity, the cell 

temperature which drove the alkali number density, and the types and amounts of buffer 

gases in the cell providing spin orbit relaxation and pressure broadening.  The explored 

parameter space as well as the laser data is provided in Appendix A.  Analysis of this data 

in conjunction with the frequency dependent three-level model demonstrated that laser 

performance degradation at high pump intensities due to thermal effects is a result of a 

density gradient in both alkali and spin orbit gas concentrations from on axis heating.  

This is contrary to the previously proposed thermal effects, which suggest the on axis 

heating results in a thermal lens, degrading laser performance.[40,48]  This important 

distinction in thermal effects, implies that laser performance can easily be recovered by 

simply increasing the concentration of alkali and buffer gas in the gain volume, while a 

thermal lensing scenario would require a flowing gas system for cooling to prevent the 

temperature from becoming elevated and maintaining laser performance, drastically 

increasing the complexity of an operational system. 

In addition to the on axis heating analysis, this work produced a rubidium laser 

which maintained a linear slope efficiency through pump intensities as high as 32 times 

the threshold value.  The ability to maintain linear performance this far beyond threshold, 

essentially negates the initial losses that must be overcome to bleach through the alkali 
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cell and begin the lasing process.  Pumping a rubidium laser at 32 times beyond its 

threshold value results in an overall efficiency of 95% when the quantum efficiency is 

incorporated, providing further evidence that DPALs should be scalable to highly 

efficient kilowatt class devices for the Air Force. 

Quasi Two Level Model 

It has routinely been assumed that when using ethane or methane as the spin orbit 

relaxing gas in a DPAL, the spin orbit rate between the 2P3/2 and 2P1/2 state is sufficiently 

fast that the laser operates in the quasi two level limit, where one assumes that the 

population immediately transfers between the spin orbit split states.  This assumption is 

valid if the spin orbit rate is faster than the pump rate, and holds under typical DPAL 

conditions.  This research has validated the quasi two level analytic model through an 

analysis of the slope efficiency dependence on output coupler and alkali concentration.  

Expressing the slope efficiency of a DPAL system as absorbance, creates a value that 

scales linearly with alkali concentration in the gain volume which can be represented by 

the quasi-two level analytic model developed by AFIT.  Although the model accurately 

represented the absorbance of the system, the effective cross section required to fit the 

data with the analytic equations was seven times lower than anticipated.  Several efforts 

are proposed in the future work section to resolve this discrepancy.   

Temporal Dynamics 

During the course of this research, the temporal dynamics of a pulsed alkali laser 

system have been studied for the first time.  Although the pulsed rubidium laser was 

operating in a quasi steady state regime, the efficiency of the system did change during 
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the lifecycle of the pulse.  This verified for the DPAL community that caution must be 

used when averaging a pulse to determine efficiency of a system, and in fact it is better to 

use the instantaneous efficiencies of the system through the pulse lifecycle.  The 

instantaneous efficiency analysis provided confirmation that laser performance 

degradations were attributable to limitation in the spin orbit coupling rate, easily 

recovered though an increase in the spin orbit gas concentration.  In fact, all laser 

performance reductions observed were attributed to limitations due to concentrations of 

buffer gas or alkali and can be reversed, implying no evidence of second order kinetics 

which would catastrophically limit DPAL performance. 

The three-level frequency dependent pulsed DPAL model accurately represented 

the temporal pulse shape data when only ethane or methane were present as buffer gases.  

However, the model, using the same fit parameters could not predict the increase in laser 

performance with the addition of helium into the laser cavity, but indicated an on axis 

temperature increase of 226oC was sufficient to explain the performance increase. 

Blue and Infrared Spots 

This work has demonstrated the production of blue and infrared amplified 

spontaneous emission beams through a two photon absorption process in both rubidium 

and cesium.  The slope efficiency, 0.5% in rubidium, while low compared to a traditional 

DPAL, is higher than experiments employing a sequential double resonance absorption.  

Since all transitions in this three-level system are optical, there is not quantum defect in 

the system implying the potential for very low heat loading.  Additionally, the spin orbit 

gas required in a DPAL that can lead to soot deposition on the windows is no a factor in 
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this system.  The performance limit attainable through increasing the alkali concentration 

in a heat pipe configuration has yet to be achieved. 

Proposed Future Work 

To resolve the effective cross section discrepancies in the quasi two level model, 

measurements of the alkali concentration within the pumped volume as well as the 

temporal dependence of the bleached wave should be studied.  In addition, the three-level 

frequency dependent model should be modified to incorporate the effects of on axis 

heating, as well as the addition of a spatially varying Gaussian pump pulse capable of 

bleaching the system at different pump intensities. 

There is a great deal of future work that should be performed on the two photon  

absorption blue and IR ASE beams.  A full analysis of the kinetic mechanism is required 

to evaluate the scaling and the efficiency of this new system.  In addition, the two photon 

absorption cross sections must be accurately measured, as well as the production 

mechanism dependence when a pressure broadening gas is added to the system.  

Following the kinetic study, an attempt should be made to produce a true laser in both the 

blue and IR simultaneously. 
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Appendix A.  Raw Data 

 

During the course of this research effort, a large amount of laser performance data 

was collected while attempting to characterize DPAL performance and develop an 

understanding of how alkali number density, output coupler reflectivity and buffer gas 

types affected output laser performance.  Unfortunately, the data presented in journal 

articles must be condensed to the minimum absolutely necessary.  Therefore, most of the 

measured data was not included in the journal submissions nor the previous chapters.  

This appendix is an attempt to archive all of the data which was collected should follow 

on researchers chose to reexamine the parameter space which has been presented here.  

First, a table demonstrating the wide range of varied parameters is shown, and is followed 

by figures documenting the laser power vs. the input pump power for all cases.  
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Table 11. Rubidium DPAL data sets collected during the course of this research. 

Cell Temp (oC) Output Coupler 
Reflectivity SO Gas Pump Power 

Range 

106 23% 550 Torr CH4 0.1 - 1.8 W 
109 23% 550 Torr CH4 0.1 - 1.8 W 
111 23% 550 Torr CH4 0.1 - 1.8 W 
109 32% 550 Torr CH4 0.1 - 1.8 W 
114 32% 550 Torr CH4 0.1 - 1.8 W 
117 32% 550 Torr CH4 0.1 - 1.8 W 
120 32% 550 Torr CH4 0.1 - 1.8 W 
120 50% 450 Torr C2H6 0.1 - 2 W 
110 50% 450 Torr C2H6 0.1 - 2 W 
100 50% 450 Torr C2H6 0.1 - 2 W 
90 50% 450 Torr C2H6 0.1 - 2 W 
80 50% 450 Torr C2H6 0.1 - 2 W 
120 20% 450 Torr C2H6 0.1 - 2 W 
110 20% 450 Torr C2H6 0.1 - 2 W 
100 20% 450 Torr C2H6 0.1 - 2 W 
90 20% 450 Torr C2H6 0.1 - 2 W 
80 20% 450 Torr C2H6 0.1 - 2 W 
120 70% 450 Torr C2H6 0.1 - 2 W 
100 70% 450 Torr C2H6 0.1 - 2 W 
80 70% 450 Torr C2H6 0.1 - 2 W 
90 20% 600 Torr C2H6 0.1 - 3 W 
100 20% 600 Torr C2H6 0.1 - 3 W 
110 20% 600 Torr C2H6 0.1 - 3 W 
120 20% 600 Torr C2H6 0.1 - 3.5 W 
90 20% 300 Torr C2H6 / 200 Torr He4 0.1 - 3 W 
100 20% 300 Torr C2H6 / 200 Torr He4 0.1 - 3 W 

120 20% 300 Torr C2H6 / 200 Torr He4 0.1 - 3 W 

90 20% 450 Torr C2H6 / 200 Torr He4 0.1 - 3 W 

100 20% 450 Torr C2H6 / 200 Torr He4 0.1 - 3 W 

120 20% 450 Torr C2H6 / 200 Torr He4 0.1 - 3 W 
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Figure 47.  Pmethane = 550 Torr, ROC = 23%, T = 106oC 

 
Figure 48.  Pmethane = 550 Torr, ROC = 23%, T = 109oC 

 

Power In, Pin (mW)

0 500 1000 1500 2000

P
ow

er
 O

ut
, P

ou
t (

m
W

)

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ow

er
 O

ut
, P

ou
t (

m
W

)

0

200

400

600

800



92 

 
Figure 49.  Pmethane = 550 Torr, ROC = 23%, T = 111oC 

  
Figure 50.  Pmethane = 550 Torr, ROC = 32%, T = 109oC 
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Figure 51.  Pmethane = 550 Torr, ROC = 32%, T = 114oC 

 
Figure 52.  Pmethane = 550 Torr, ROC = 32%, T = 117oC 
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Figure 53.  Pmethane = 550 Torr, ROC = 32%, T = 120oC 

 
Figure 54.  Pethane = 450 Torr, ROC = 50%, T = 120oC 
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Figure 55.  Pethane = 450 Torr, ROC = 50%, T = 110oC 

 

 
Figure 56.  Pethane = 450 Torr, ROC = 50%, T = 100oC 
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Figure 57.  Pethane = 450 Torr, ROC = 50%, T = 90oC 

 

 
Figure 58.  Pethane = 450 Torr, ROC = 50%, T = 80oC 
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Figure 59.  Pethane = 450 Torr, ROC = 20%, T = 120oC 

 

 
Figure 60.  Pethane = 450 Torr, ROC = 20%, T = 110oC 
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Figure 61.  Pethane = 450 Torr, ROC = 20%, T = 100oC 

 
Figure 62.  Pethane = 450 Torr, ROC = 20%, T = 90oC  
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Figure 63.  Pethane = 450 Torr, ROC = 20%, T = 80oC 

 
Figure 64.  Pethane = 450 Torr, ROC = 70%, T = 120oC 
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Figure 65.  Pethane = 450 Torr, ROC = 70%, T = 100oC 

 
Figure 66.  Pethane = 450 Torr, ROC = 70%, T = 80oC 
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Figure 67.  Pethane = 600 Torr, ROC = 20%, T = 120oC 

 
Figure 68.  Pethane = 600 Torr, ROC = 20%, T = 110oC 
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Figure 69.  Pethane = 600 Torr, ROC = 20%, T = 100oC 

 
Figure 70.  Pethane = 600 Torr, ROC = 20%, T = 90oC 
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Figure 71.  Pethane = 300 Torr, PHe = 200 Torr, ROC = 20%, T = 120oC 

 
Figure 72.  Pethane = 300 Torr, PHe = 200 Torr, ROC = 20%, T = 100oC 
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Figure 73.  Pethane = 300 Torr, PHe = 200 Torr, ROC = 20%, T = 90oC 

 
Figure 74.  Pethane = 450 Torr, PHe = 200 Torr, ROC = 20%, T = 120oC 
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Figure 75.  Pethane = 450 Torr, PHe = 200 Torr, ROC = 20%, T = 100oC 

 
Figure 76.  Pethane = 450 Torr, PHe = 200 Torr, ROC = 20%, T = 90oC 
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Appendix B.  Laser Performance Dependence on Pump Repetition Rate 

 
The repetition rate of the pump laser was varied during the course of this research 

to explore the possibility that the gain volume was being locally heated during the pump 

pulse.  While Figure 77 appears to demonstrate a dependence of output pulse energy on 

the repetition rate, there is not a dependence.  In fact, as the repetition rate is increased, 

the pump pulses become temporally stretched and grow to as much as 150 ns in time, 

compared to the initial 100 ns.  And since the energy per pulse remains constant, the peak 

power achieved during each pulse is less, resulting in a lower energy per pulse out.  

Essentially, the pulse spends a greater amount of time operating in the wings, where 

efficiency is lower than at the peak of the pulse.  This deviation must be accounted for in 

any pulsed system to ensure that accurate slope efficiencies are determined. 
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Figure 77.  Rubidium laser performance with repetition rates of (●)12.5 kHz, ()12.0 
kHz, (� )11.5 kHz, (○)11.0 kHz, (�)10.5 kHz, and (�)10.0 kHz  
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